This article surveys results on the global surjectivity of linear partial differential operators with constant coefficients on the space of real analytic functions. Some new results are also included.
@article{bwmeta1.element.bwnjournal-article-bcpv33z1p149bwm, author = {Kaneko, Akira}, title = {On the global solvability of linear partial differential equations with constant coefficients in the space of real analytic functions}, journal = {Banach Center Publications}, volume = {37}, year = {1996}, pages = {149-160}, zbl = {0851.35024}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv33z1p149bwm} }
Kaneko, Akira. On the global solvability of linear partial differential equations with constant coefficients in the space of real analytic functions. Banach Center Publications, Tome 37 (1996) pp. 149-160. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv33z1p149bwm/
[000] [A] K. G. Andersson, Global solvability of partial differential equations in the space of real analytic functions, in: Coll. on Analysis, Rio de Janeiro, August 1972, Analyse Fonctionnelle, Hermann, 1974, 1-4.
[001] [AN] A. Andreotti and M. Nacinovich, Analytic convexity and the principle of Phragmén-Lindelöf, Lecture Notes, Università di Pisa, 1980. | Zbl 0458.35004
[002] [Bj] G. B. Björk, Linear partial differential operators and generalized distributions, Ark. Mat. 6 (1966), 351-407.
[003] [BT] G. Bratti and N. Trevisan, Un teorema di riducibilità per la risoluzione di qualche sistema differenziale sovradeterminato, Rend. Sem. Mat. Univ. Politec. Torino, Fasc. Speciale, Settembre (1983), 75-79.
[004] [Br] R. W. Braun, A partial differential operator which is surjective on Gevrey classes with 1 ≤ d < 2 and d ≥ 6 but not for 2 ≤ d < 6, Studia Math. 107 (1993), 157-169.
[005] [BMV] R. W. Braun, R. Meise and D. Vogt, Characterization of the linear partial differential operators with constant coefficients which are surjective on non-quasianalytic classes of Roumieu type on , preprint. | Zbl 0848.35023
[006] [C1] L. Cattabriga, Sull'esistenza di soluzioni analitiche reali di equazioni a derivate parziali a coefficienti costanti, Boll. Un. Mat. Ital. (4) 12 (1975), 221-234. | Zbl 0328.35009
[007] [C2] L. Cattabriga, Soluzioni di equazioni differenziali a coefficienti costanti appartenenti in un semispazio a certe classi di Gevrey, ibid. 12 (1975), 324-348. | Zbl 0336.35018
[008] [C3] L. Cattabriga, Esistenza di una soluzione fondamentale con supporto singolare contenuto in un semispazio e suriettivita di operatori differenziali a coefficienti costanti, preprint, Univ. di Bologna, 1981.
[009] [C4] L. Cattabriga, On the surjectivity of differential polynomials on Gevrey spaces, in: Proceedings 'Linear Partial and Pseudo-Differential Operators', Torino, 1982, Rend. Sem. Mat. Univ. Politec. Torino, Special Issue (1984), 81-89.
[010] [C5] L. Cattabriga, Solutions in Gevrey spaces of partial differential equations with constant coefficients, preprint, Univ. di Bologna.
[011] [CD1] L. Cattabriga and E. De Giorgi, Sull'esistenza di soluzioni analitiche di equazioni a derivate parziali a coefficienti costanti in un qualunque numero di variabili, Boll. Un. Mat. Ital. (4) 6 (1972), 301-311. | Zbl 0258.35006
[012] [CD2] L. Cattabriga and E. De Giorgi, Soluzioni di equazioni differenziali a coefficienti costanti appartenenti in un semispazio a certe classi di Gevrey, ibid. 12 Suppl. (1975), 324-348. | Zbl 0336.35018
[013] [D] E. De Giorgi, Solutions analytiques des équations aux dérivées partielles à coefficients constants, in: Séminaire Goulaouic-Schwartz, 1971-72, Exposé No. 24. | Zbl 0244.35017
[014] [DC1] E. De Giorgi and L. Cattabriga, Una dimostrazione diretta dell'esistenza di soluzioni analitiche nel piano reale di equazioni a derivate parziali a coefficienti costanti, Boll. Un. Mat. Ital. (4) 4 (1971), 1015-1027.
[015] [E1] L. Ehrenpreis, Solution of some problems of division I, Amer. J. Math. 76 (1954), 883-903. | Zbl 0056.10601
[016] [E2] L. Ehrenpreis, Mean periodic functions I, ibid. 77 (1955), 293-328.
[017] [E3] L. Ehrenpreis, Solution of some problems of division III, ibid. 78 (1956), 685-715.
[018] [E4] L. Ehrenpreis, Solution of some problems of division IV, ibid. 82 (1960), 522-588. | Zbl 0098.08401
[019] [E5] L. Ehrenpreis, A fundamental principle for systems of linear partial differential equations with constant coefficients and some of its applications, in: Proc. Intern. Symp. on Linear Spaces, Jerusalem, 1961, 161-174.
[020] [E6] L. Ehrenpreis, Fourier Analysis in Several Complex Variables, Wiley-Interscience, 1970.
[021] [H1] L. Hörmander, On the range of convolution operators, Ann. of Math. 76 (1962), 148-170. | Zbl 0109.08501
[022] [H2] L. Hörmander, Linear Partial Differential Operators, Springer, 1963.
[023] [H3] L. Hörmander, On the existence of real analytic solutions of partial differential equations with constant coefficients, Invent. Math. 21 (1973), 151-182. | Zbl 0282.35015
[024] [Kan1] A. Kaneko, On the global existence of real analytic solutions of linear partial differential equations on unbounded domain, J. Fac. Sci. Univ. Tokyo Sec. 1A 32 (1985), 319-372.
[025] [Kan2] A. Kaneko, A sharp sufficient geometric condition for the existence of global real analytic solutions on a bounded domain, J. Math. Soc. Japan 39 (1987), 163-170. | Zbl 0619.35019
[026] [Kan3] A. Kaneko, Remarks on necessary conditions for the existence of global real analytic solutions of linear partial differential equations on a compact set, ibid. 32 (1985), 417-427.
[027] [Kan4] A. Kaneko, Introduction to Hyperfunctions, Univ. of Tokyo Press, 1980-1982 (in Japanese); English translation, Kluwer, 1988.
[028] [Kan5] A. Kaneko, On the flabbiness of the sheaf of Fourier microfunctions, Sci. Pap. Coll. Gen. Educ. Univ. Tokyo 36 (1986), 1-14.
[029] [Kaw1] T. Kawai, On the theory of Fourier hyperfunctions and its applications to partial differential equations with constant coefficients, J. Fac. Sci. Univ. Tokyo Sec. 1A 17 (1970), 467-517.
[030] [Kaw2] T. Kawai, On the global existence of real analytic solutions of linear differential equations (I), J. Math. Soc. Japan 24 (1972), 481-517. | Zbl 0234.35012
[031] [Kaw3] T. Kawai, On the global existence of real analytic solutions of linear differential equations (II), ibid. 25 (1973), 644-647.
[032] [L1] J.-L. Lieutenant, Application de décompositions des fonctions analytiques à la théorie des microfonctions, Thèse, Univ. de Liège 1981; Résumé in Astérisque 89-90, (1981).
[033] [L2] J.-L. Lieutenant, Microlocalization at the boundary of a convex set, J. Fac. Sci. Univ. Tokyo Sec. 1A 33 (1986), 83-130.
[034] [Mal1] B. Malgrange, Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution, Ann. Inst. Fourier (Grenoble) 6 (1955), 271-355. | Zbl 0071.09002
[035] [Mal2] B. Malgrange, Sur les ouverts convexes par rapport à un opérateur différentiel, C. R. Acad. Sci. Paris 254 (1962), 614-615. | Zbl 0117.06301
[036] [Mi] T. Miwa, On the global existence of real analytic solutions of systems of linear differential equations with constant coefficients, Proc. Japan Acad. 49 (1973), 500-502. | Zbl 0273.35013
[037] [Pa1] V. P. Palamodov, Linear Differential Operators with Constant Coefficients, Moscow, 1967 (in Russian); English translation, Springer, 1970; Japanese translation, Yoshioka, 1973.
[038] [Pa2] V. P. Palamodov, Functor of projective limit in the category of topological linear spaces, Mat. Sb. 75 (1968), 567-603. | Zbl 0175.41801
[039] [Pi] L. C. Piccinini, Non surjectivity of the Cauchy-Riemann operator on the space of the analytic functions on . Generalization to the parabolic operators, Boll. Un. Mat. Ital. (4) 7 (1973), 12-28. | Zbl 0264.35003
[040] [SKK] M. Sato, T. Kawai and M. Kashiwara, Microfunctions and Pseudo-Differential Equations, in: Lecture Notes in Math. 287, Springer, 1973, 263-352.
[041] [Sch1] P. Schapira, Front d'onde analytique au bord I, C. R. Acad. Sci. Paris 302 (1986), 383-386.
[042] [Sch2] P. Schapira, Front d'onde analytique au bord II, in: Séminaire E.D.P., Ecole Polytech. 1985-86, Exposé No. 1.
[043] [Z1] G. Zampieri, A link between and analytic solvability for P.D.E. with constant coefficients, Rend. Sem. Mat. Univ. Padova 63 (1980), 145-150.
[044] [Z2] G. Zampieri, On the stability under localization of the Phragmén-Lindelöf principle, Rend. Accad. Naz. Sci. Mat. 99 (1982), 87-114. | Zbl 0514.35013
[045] [Z3] G. Zampieri, Propagation of singularity and existence of real analytic solutions of locally hyperbolic equations, J. Fac. Sci. Univ. Tokyo Sec. 1A 31 (1984), 373-390.
[046] [Z4] G. Zampieri, An application of the Fundamental Principle of Ehrenpreis to the existence of global Gevrey solutions of linear differential equations, Boll. Un. Mat. Ital. (6) 5 (1986), 361-392. | Zbl 0624.35011