On the maximum principle for principal curvatures
Ivochkina, Nina
Banach Center Publications, Tome 37 (1996), p. 115-126 / Harvested from The Polish Digital Mathematics Library

The paper contains the estimates from above of the principal curvatures of the solution to some curvature equations. A correction of the author's previous argument is presented.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:262840
@article{bwmeta1.element.bwnjournal-article-bcpv33z1p115bwm,
     author = {Ivochkina, Nina},
     title = {On the maximum principle for principal curvatures},
     journal = {Banach Center Publications},
     volume = {37},
     year = {1996},
     pages = {115-126},
     zbl = {0864.35017},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv33z1p115bwm}
}
Ivochkina, Nina. On the maximum principle for principal curvatures. Banach Center Publications, Tome 37 (1996) pp. 115-126. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv33z1p115bwm/

[000] [1] L. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations III. Functions of the eigenvalues of the Hessian, Acta Math. 155 (1985), 261-301. | Zbl 0654.35031

[001] [2] L. Caffarelli, L. Nirenberg and J. Spruck, Nonlinear second-order elliptic equations IV. Starshaped compact Weingarten hypersurfaces, in: Current Topics in Partial Differential Equations, Y. Olya, K. Kasahara and N. Shimajura (eds.), Kinokunize Co., Tokyo, 1986, 1-26. | Zbl 0672.35027

[002] [3] L. Caffarelli, L. Nirenberg and J. Spruck, Nonlinear second order elliptic equations V. The Dirichlet problem for Weingarten hypersurfaces, Comm. Pure Appl. Math. 41 (1988), 47-70. | Zbl 0672.35028

[003] [4] N. M. Ivochkina, A description of the stability cones generated by differential operators of Monge-Ampère type, Mat. Sb. 122 (1983), 265-275 (in Russian); English transl. in Math. USSR-Sb. 50 (1985).

[004] [5] N. M. Ivochkina, Solution of the Dirichlet problem for some equations of Monge-Ampère type, Mat. Sb. 128 (1985), 403-415 (in Russian); English transl. in Math. USSR-Sb. 56 (1987).

[005] [6] N. M. Ivochkina, Solution of the Dirichlet problem for the m-th order curvature equations, Mat. Sb. 180 (1989), 867-887 (in Russian); English transl. in Math. USSR-Sb. 67 (1990). | Zbl 0695.35074

[006] [7] N. M. Ivochkina, The Dirichlet problem for m-th order curvature equations, Algebra i Analiz 2 (3) (1990), 192-217 (in Russian); English transl. in Leningrad Math. J. 2 (1991). | Zbl 0716.35027

[007] [8] P. L. Lions, Sur les équations de Monge-Ampère I, Manuscripta Math. 41 (1983), 1-43. | Zbl 0509.35036

[008] [9] N. S. Trudinger, The Dirichlet problem for the prescribed curvature equations, Arch. Rational Mech. Anal. 111 (1990), 153-179. | Zbl 0721.35018

[009] [10] N. S. Trudinger, Isoperimetric inequalities for quermassintegrals, preprint CMA-MR11-93.