The micro-support of the complex defined by a convolution operator in tube domains
Ishimura, Ryuichi ; Okada, Yasunori
Banach Center Publications, Tome 37 (1996), p. 105-114 / Harvested from The Polish Digital Mathematics Library
Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:262806
@article{bwmeta1.element.bwnjournal-article-bcpv33z1p105bwm,
     author = {Ishimura, Ryuichi and Okada, Yasunori},
     title = {The micro-support of the complex defined by a convolution operator in tube domains},
     journal = {Banach Center Publications},
     volume = {37},
     year = {1996},
     pages = {105-114},
     zbl = {0921.32003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv33z1p105bwm}
}
Ishimura, Ryuichi; Okada, Yasunori. The micro-support of the complex defined by a convolution operator in tube domains. Banach Center Publications, Tome 37 (1996) pp. 105-114. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv33z1p105bwm/

[000] [Ao] T. Aoki, Existence and continuation of holomorphic solutions of differential equations of infinite order, Adv. in Math. 72 (1988), 261-283. | Zbl 0702.35253

[001] [BeGV] C. A. Berenstein, R. Gay and A. Vidras, Division theorems in the spaces of entire functions with growth conditions and their applications to PDE of infinite order, preprint. | Zbl 0842.32001

[002] [BeSt] C. A. Berenstein and D. C. Struppa, A remark on 'convolutors in spaces of holomorphic functions', in: Lecture Notes in Math. 1276, Springer, 1987, 276-280.

[003] [BeSt] C. A. Berenstein and D. C. Struppa, Solutions of convolution equations in convex sets, Amer. J. Math. 109 (1987), 521-544.

[004] [BoS] J. M. Bony et P. Schapira, Existence et prolongement des solutions holomorphes des équations aux dérivées partielles, Invent. Math. 17 (1972), 95-105.

[005] [E1] O. V. Epifanov, Solvability of convolution equations in convex domains, Mat. Zametki 15 (1974), 787-796 (in Russian); English transl.: Math. Notes 15 (1974), 472-477. | Zbl 0314.46050

[006] [E2] O. V. Epifanov, On the surjectivity of convolution operators in complex domains, Mat. Zametki 16 (1974), 415-422. (in Russian); English transl.: Math. Notes 16 (1974), 837-841.

[007] [E3] O. V. Epifanov, Criteria for a convolution to be epimorphic in arbitrary regions of the complex plaine, Mat. Zametki 31 (1974), 695-705 (in Russian); English transl.: Math. Notes 31 (1982), 354-359.

[008] [F] Yu. Favorov, On the addition on the indicators of entire and subharmonic functions of several variables, Mat. Sb. 105 (147) (1978), 128-140 (in Russian).

[009] [H1] L. Hörmander, On the range of convoluton operators, Ann. of Math. 76 (1962), 148-170.

[010] [H2] L. Hörmander, An Introduction to Complex Analysis in Several Variables, Van Nostrand, 1966.

[011] [I1] R. Ishimura, Théorèmes d'existence et d'approximation pour les équations aux dérivées partielles linéaires d'ordre infini, Publ. RIMS Kyoto Univ. 32 (1980), 393-415. | Zbl 0459.35015

[012] [I2] R. Ishimura, Existence locale de solutions holomorphes pour les équations différentielles d'ordre infini, Ann. Inst. Fourier (Grenoble) 35 (3) (1985), 49-57. | Zbl 0544.35085

[013] [I3] R. Ishimura, A remark on the characteristic set for convolution equations, Mem. Fac. Sci. Kyushu Univ. 46 (1992), 195-199. | Zbl 0773.32006

[014] [IO] R. Ishimura and Y. Okada, The existence and the continuation of holomorphic solutions for convolution equations in tube domains, Bull. Soc. Math. France 122 (1994), 413-433. | Zbl 0826.35144

[015] [IOk] R. Ishimura and Y. Okada, Sur la condition (S) de Kawai et la propriété de croissance régulière d'une fonction sous-harmonique et d'une fonction entière, Kyushu J. Math. 48 (1994), 257-263.

[016] [Kan] A. Kaneko, Introduction to Hyperfunctions, Kluwer Acad. Publ., 1988.

[017] [KS] M. Kashiwara and P. Schapira, Sheaves on Manifolds, Grundlehren Math. Wiss. 292, Springer, 1990.

[018] [Kaw] T. Kawai, On the theory of Fourier hyperfunctions and its applications to partial differential equations with constant coefficients, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 17 (1970), 467-517. | Zbl 0212.46101

[019] [Ki] C. O. Kiselman, Prolongement des solutions d'une équation aux dérivées partielles à coefficients constants, Bull. Soc. Math. France 97 (1969), 329-356. | Zbl 0189.40502

[020] [Ko1] Yu. F. Korobeĭnik, On solutions of some functional equations in classes of functions analytic in convex domains, Mat. Sb. 75 (1968), 225-234 (in Russian); English transl.: Math. USSR-Sb. 4 (1968), 203-211.

[021] [Ko2] Yu. F. Korobeĭnik, The existence of an analytic solution of an infinite order differential equation and the nature of its domain of analyticity, Mat. Sb. 80 (1969), 52-76 (in Russian); English transl.: Math. USSR-Sb. 9 (1969), 53-71.

[022] [Ko3] Yu. F. Korobeĭnik, Convolution equations in the complex domain, Mat. Sb. 127 (1699 (1985) (in Russian); English transl.: Math. USSR-Sb. 55 (1985), 171-193.

[023] [LG] P. Lelong and L. Gruman, Entire Functions of Several Complex Variables, Grundlehren Math. 282, Springer, 1986. | Zbl 0583.32001

[024] [L] B. Ja. Levin, Distribution of Zeros of Entire Functions, Trans. Math. Monographs 5, Amer. Math. Soc., 1964.

[025] [M] B. Malgrange, Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution, Ann. Inst. Fourier (Grenoble) 6 (1955-1956), 271-354. | Zbl 0071.09002

[026] [MéSt] A. Méril and D. C. Struppa, Convolutors in spaces of holomorphic functions, in: Lecture Notes in Math. 1276, Springer, 1987, 253-275. | Zbl 0628.42008

[027] [Mo1] V. V. Morzhakov, Convolution equations in spaces of functions holomorphic in convex domains and on convex compacta in n, Mat. Zametki 16 (1974), 431-440 (in Russian); English transl.: Math. Notes 16 (1974), 846-851.

[028] [Mo2] V. V. Morzhakov, On epimorphicity of a convolution operator in a convex domains in l, Mat. Sb. 132 (174) (1987), 352-370 (in Russian); Math. USSR-Sb. 60 (1988), 347-364. | Zbl 0632.46034

[029] [Mo3] V. V. Morzhakov, Convolution equations in convex domains of n, in: Complex Anal. and Appl. ’87, Sofia, 1989, 360-364.

[030] [N] V. V. Napalkov, Convolution equations in multidimensional spaces, Mat. Zametki 25 (1979), 761-774 (in Russian); English transl.: Math. Notes 25 (1979). | Zbl 0403.45005

[031] [O] Y. Okada, Stability of convolution operators, Publ. RIMS Kyoto Univ., to appear. | Zbl 0808.46057

[032] [Sé] A. Sébbar, Prolongement des solutions holomorphes de certains opérateurs différentiels d'ordre infini à coefficients constants, in: Sém. Lelong-Skoda, Lecture Notes in Math. 822, Springer, 1980, 199-220.

[033] [T] V. A. Tkachenko, Equations of convolution type in spaces of analytic functionals, Izv. Akad. Nauk SSSR Ser. Mat. 41 (1977), 378-392 (in Russian); English transl.: Math. USSR-Izv. 11 (1977), 361-374.

[034] [V] A. Vidras, Interpolation and division problems in spaces of entire functions with growth conditions and their applications, Doct. Diss., Univ. of Maryland, 1992.

[035] [Z] M. Zerner, Domaines d'holomorphie des fonctions vérifiant une équation aux dérivées partielles, C. R. Acad. Sci. Paris 272 (1971), 1646-1648. | Zbl 0213.37004