We consider the problem of constructing the optimal closed loop control in the time minimal control problem, with terminal constraint belonging to a manifold of codimension one, for systems of the form , and or , under generic assumptions. The analysis is localized near the terminal manifold and is developed to control a class of chemical systems.
@article{bwmeta1.element.bwnjournal-article-bcpv32z1p95bwm, author = {Bonnard, B. and Pelletier, M.}, title = {Time minimal synthesis with target of codimension one under generic conditions}, journal = {Banach Center Publications}, volume = {31}, year = {1995}, pages = {95-109}, zbl = {0971.49009}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv32z1p95bwm} }
Bonnard, B.; Pelletier, M. Time minimal synthesis with target of codimension one under generic conditions. Banach Center Publications, Tome 31 (1995) pp. 95-109. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv32z1p95bwm/
[000] [1] R. Benedetti and J. J. Risler, Real Algebraic and Semi-Algebraic Sets, Hermann, Paris, 1990. | Zbl 0694.14006
[001] [2] B. Bonnard et I. Kupka, Théorie des singularités de l'application entrée/sortie et optimalité des trajectoires singulières dans le problème du temps minimal, Forum Math. 5 (1993), 111-159.
[002] [3] B. Bonnard and J. de Morant, Towards a geometric theory in the time minimal control of chemical batch reactors, to appear in SIAM J. Control Optim. | Zbl 0882.49024
[003] [4] B. Bonnard and M. Pelletier, Time minimal synthesis for planar systems in the neighborhood of a terminal manifold of codimension one, preprint, Laboratoire de Topologie de Dijon, 1992, to appear in JMSEC.
[004] [5] I. Kupka, Geometric theory of extremals in optimal control problems. I. The fold and Maxwell cases, Trans. Amer. Math. Soc. 299 (1977), 225-243. | Zbl 0606.49016
[005] [6] E. B. Lee and L. Markus, Foundations of Optimal Control Theory, Wiley, New York, 1967. | Zbl 0159.13201
[006] [7] H. Poincaré, Sur les lignes géodésiques des surfaces convexes, Trans. Amer. Math. Soc. 6 (1905), 237-274. | Zbl 36.0669.01
[007] [8] H. Schättler, The local structure of time optimal trajectories under generic conditions, SIAM J. Control Optim. 26 (1988), 899-918. | Zbl 0656.49007
[008] [9] H. J. Sussmann, The structure of time optimal trajectories for single-input systems in the plane: the non singular case, ibid. 25 (1987), 433-465.
[009] [10] H. J. Sussmann, Regular synthesis for time optimal control single-input real analytic systems in the plane, ibid. 25 (1987), 1145-1162. | Zbl 0701.93035