Time minimal synthesis with target of codimension one under generic conditions
Bonnard, B. ; Pelletier, M.
Banach Center Publications, Tome 31 (1995), p. 95-109 / Harvested from The Polish Digital Mathematics Library

We consider the problem of constructing the optimal closed loop control in the time minimal control problem, with terminal constraint belonging to a manifold of codimension one, for systems of the form v̇=X+uY, |u|1 and vR2 or R3, under generic assumptions. The analysis is localized near the terminal manifold and is developed to control a class of chemical systems.

Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:262776
@article{bwmeta1.element.bwnjournal-article-bcpv32z1p95bwm,
     author = {Bonnard, B. and Pelletier, M.},
     title = {Time minimal synthesis with target of codimension one under generic conditions},
     journal = {Banach Center Publications},
     volume = {31},
     year = {1995},
     pages = {95-109},
     zbl = {0971.49009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv32z1p95bwm}
}
Bonnard, B.; Pelletier, M. Time minimal synthesis with target of codimension one under generic conditions. Banach Center Publications, Tome 31 (1995) pp. 95-109. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv32z1p95bwm/

[000] [1] R. Benedetti and J. J. Risler, Real Algebraic and Semi-Algebraic Sets, Hermann, Paris, 1990. | Zbl 0694.14006

[001] [2] B. Bonnard et I. Kupka, Théorie des singularités de l'application entrée/sortie et optimalité des trajectoires singulières dans le problème du temps minimal, Forum Math. 5 (1993), 111-159.

[002] [3] B. Bonnard and J. de Morant, Towards a geometric theory in the time minimal control of chemical batch reactors, to appear in SIAM J. Control Optim. | Zbl 0882.49024

[003] [4] B. Bonnard and M. Pelletier, Time minimal synthesis for planar systems in the neighborhood of a terminal manifold of codimension one, preprint, Laboratoire de Topologie de Dijon, 1992, to appear in JMSEC.

[004] [5] I. Kupka, Geometric theory of extremals in optimal control problems. I. The fold and Maxwell cases, Trans. Amer. Math. Soc. 299 (1977), 225-243. | Zbl 0606.49016

[005] [6] E. B. Lee and L. Markus, Foundations of Optimal Control Theory, Wiley, New York, 1967. | Zbl 0159.13201

[006] [7] H. Poincaré, Sur les lignes géodésiques des surfaces convexes, Trans. Amer. Math. Soc. 6 (1905), 237-274. | Zbl 36.0669.01

[007] [8] H. Schättler, The local structure of time optimal trajectories under generic conditions, SIAM J. Control Optim. 26 (1988), 899-918. | Zbl 0656.49007

[008] [9] H. J. Sussmann, The structure of time optimal trajectories for single-input systems in the plane: the C non singular case, ibid. 25 (1987), 433-465.

[009] [10] H. J. Sussmann, Regular synthesis for time optimal control single-input real analytic systems in the plane, ibid. 25 (1987), 1145-1162. | Zbl 0701.93035