This paper presents the variational approach to some optimization problems: Mayer's problem with or without constraints on the final point, local controllability of a trajectory, time-optimal problems.
@article{bwmeta1.element.bwnjournal-article-bcpv32z1p83bwm, author = {Bianchini, R.}, title = {Variational approach to some optimization control problems}, journal = {Banach Center Publications}, volume = {31}, year = {1995}, pages = {83-94}, zbl = {0845.49011}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv32z1p83bwm} }
Bianchini, R. Variational approach to some optimization control problems. Banach Center Publications, Tome 31 (1995) pp. 83-94. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv32z1p83bwm/
[000] [1] M. S. Bazaraa and C. M. Shetty, Foundations of Optimization, Lecture Notes in Econom. and Math. Systems 122, Springer, Berlin, 1976. | Zbl 0334.90049
[001] [2] R. M. Bianchini and G. Stefani, Controllability along a reference trajectory: a variational approach, SIAM J. Control Optim. 31 (1993), 900-927. | Zbl 0797.49015
[002] [3] A. I. Dubovickiĭ and A. M. Miljutin, Extremum problems with constraints, J. Soviet Math. 4 (1963), 452-455.
[003] [4] K. Grasse, Controllability and accessibility in nonlinear control systems, PhD thesis, University of Illinois at Urbana-Champaign, 1979.
[004] [5] M. R. Hestenes, Calculus of Variations and Optimal Control Theory, Wiley, New York, 1966.
[005] [6] E. B. Lee and L. Markus, Foundations of Optimal Control Theory, Wiley, New York, 1967. | Zbl 0159.13201
[006] [7] E. S. Polovinkin and G. V. Smirnov, An approach to the differentiation of many-valued mappings and necessary conditions for optimization of solutions of differential inclusions, Differencial'nye Uravnenija 22 (1986), 944-954. | Zbl 0604.49011
[007] [8] R. T. Rockafellar, Clarke’s tangent cones and the boundaries of closed convex sets in , Nonlinear Anal. 3 (1979), 145-154.