Symmetries and integrals of motion in optimal control
Sussmann, H.
Banach Center Publications, Tome 31 (1995), p. 379-393 / Harvested from The Polish Digital Mathematics Library
Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:262687
@article{bwmeta1.element.bwnjournal-article-bcpv32z1p379bwm,
     author = {Sussmann, H.},
     title = {Symmetries and integrals of motion in optimal control},
     journal = {Banach Center Publications},
     volume = {31},
     year = {1995},
     pages = {379-393},
     zbl = {0891.49011},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv32z1p379bwm}
}
Sussmann, H. Symmetries and integrals of motion in optimal control. Banach Center Publications, Tome 31 (1995) pp. 379-393. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv32z1p379bwm/

[000] [1] F. Albrecht, Topics in Control Theory, Springer, Berlin, 1968. | Zbl 0165.10604

[001] [2] L. D. Berkovitz, Optimal Control Theory, Springer, New York, 1974. | Zbl 0295.49001

[002] [3] F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley Interscience, New York, 1983. | Zbl 0582.49001

[003] [4] L. E. Dubins, On curves of minimal length with a constraint on average curvature and with prescribed initial and terminal positions and tangents, Amer. J. Math. 79 (1957), 497-516. | Zbl 0098.35401

[004] [5] B. Kaskosz and S. Łojasiewicz Jr., A Maximum Principle for generalized control systems, Nonlinear Anal. 9 (1985), 109-130. | Zbl 0557.49012

[005] [6] E. B. Lee and L. Markus, Foundations of Optimal Control Theory, Wiley, New York, 1967. | Zbl 0159.13201

[006] [7] A. A. Markov, Some examples of the solution of a special kind of problem in greatest and least quantities, Soobshch. Kharkovsk. Mat. Obshch. 1 (1887), 250-276 (in Russian).

[007] [8] L. S. Pontryagin, V. G. Boltyanskiĭ, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, (translated by K. N. Trigoroff, L. W. Neustadt, editor), Wiley, 1962.

[008] [9] J. A. Reeds and L. A. Shepp, Optimal paths for a car that goes both forwards and backwards, Pacific J. Math. 145 (1990), 367-393.

[009] [10] H. J. Sussmann, Orbits of families of vector fields and integrability of distributions, Trans. Amer. Math. Soc. 180 (1973), 171-188. | Zbl 0274.58002

[010] [11] H. J. Sussmann and G. Tang, Shortest paths for the Reeds-Shepp car: a worked out example of the use of geometric techniques in nonlinear optimal control, SIAM J. Control, to appear.

[011] [12] H. J. Sussmann, Shortest paths with a prescribed bound on the curvature: the three-dimensional case, in preparation.

[012] [13] H. J. Sussmann, An introduction to the coordinate-free Maximum Principle, in preparation. | Zbl 0925.93135