Minima in control problems with constraints
Stefani, Gianna ; Zezza, PierLuigi
Banach Center Publications, Tome 31 (1995), p. 361-378 / Harvested from The Polish Digital Mathematics Library

This paper is devoted to describing second order conditions in the framework of extremal problems, that is, conditions obtained by reducing the optimal control problem to an abstract one in a suitable Banach (or Hilbert) space. The studied problem includes equality constraints both on the end-points and on the state-control trajectory. The second goal is to give a complete description of necessary and sufficient second order conditions for weak local optimality by describing first the associated linear-quadratic problem and then by giving a conjugate point theory for this linear quadratic problem with constraints.

Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:262775
@article{bwmeta1.element.bwnjournal-article-bcpv32z1p361bwm,
     author = {Stefani, Gianna and Zezza, PierLuigi},
     title = {Minima in control problems with constraints},
     journal = {Banach Center Publications},
     volume = {31},
     year = {1995},
     pages = {361-378},
     zbl = {1055.49510},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv32z1p361bwm}
}
Stefani, Gianna; Zezza, PierLuigi. Minima in control problems with constraints. Banach Center Publications, Tome 31 (1995) pp. 361-378. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv32z1p361bwm/

[000] [1] A. A. Agrachev, Quadratic mappings in geometric control theory, Itogi Nauki, Problemy Geometrii, 20 (1988), 111-205 (in Russian); English transl. in: J. Soviet Math. 51 (1990).

[001] [2] A. A. Agrachev and R. Gamkrelidze, Symplectic methods for optimization and control, in: B. Jakubczyk and W. Respondek (eds.), Geometry of Feedback and Optimal Control, Pure and Appl. Math., Marcel Dekker, New York, 1995. | Zbl 0965.93034

[002] [3] P. Bernhard, La théorie de la seconde variation et le problème linéaire quadratique, in: J. P. Aubin, A. Bensoussan and I. Ekeland (eds.), Advances in Hamiltonian Systems, Birkhäuser, Boston, 1983, 109-142. | Zbl 0565.70014

[003] [4] A. Dmitruk, The Euler-Jacobi equation in variational calculus, Mat. Zametki 20 (1976), 847-858 (in Russian); English transl.: Math. Notes 20 (1976), 1032-1038. | Zbl 0356.49009

[004] [5] A. L. Dontchev, W. W. Hager, A. B. Poore and B. Yang, Optimal stability and convergence in nonlinear control, preprint, 1992. | Zbl 0821.49022

[005] [6] W. H. Fleming and R. Rishel, Optimal Deterministic and Stochastic Control, Springer, Berlin, 1975. | Zbl 0323.49001

[006] [7] E. G. Gilbert and D. S. Bernstein, Second order necessary conditions in optimal control: accessory-problem results without normality conditions, J. Optim. Theory Appl. 41 (1983), 75-106. | Zbl 0497.49018

[007] [8] K. A. Grasse, Controllability and accessibility in nonlinear control systems, PhD thesis, University of Illinois at Urbana-Champaign, 1979.

[008] [9] M. R. Hestenes, Applications of the theory of quadratic forms in Hilbert space to calculus of variations, Pacific J. Math. 1 (1951), 525-581. | Zbl 0045.20806

[009] [10] M. R. Hestenes, Calculus of Variations and Optimal Control Theory, Wiley, New York, 1966.

[010] [11] E. Levitin, A. Milyutin and N. Osmolovskiĭ, Conditions of high order for a local minimum in problems with constraints, Uspekhi Mat. Nauk, 33 (1978), 85-148 (in Russian); English transl.: Russian Math. Surveys 33 (1978), 97-168.

[011] [12] K. Makowski and L. Neustadt, Optimal control problems with mixed control-phase variable equality and inequality constraints, SIAM J. Control 12 (1974), 184-228. | Zbl 0241.49007

[012] [13] H. Maurer, First and second order sufficient optimality conditions in mathematical programming and optimal control, Math. Programming Stud. 14 (1981), 163-177. | Zbl 0448.90069

[013] [14] J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Springer, New York, 1989. | Zbl 0676.58017

[014] [15] E. Mikami, Focal points in a control problem, Pacific J. Math. 35 (1970), 473-485. | Zbl 0215.30207

[015] [16] M. Morse, The Calculus of Variations in the Large, Amer. Math. Soc. Colloq. Publ. 18, New York, 1934. | Zbl 0011.02802

[016] [17] N. Osmolovskiĭ, Second order conditions for a weak local minimum in an optimal control problem (necessity, sufficiency), Dokl. Akad. Nauk SSSR 225 (1975) (in Russian); English transl.: Soviet Math. Dokl. 16 (1975), 1480-1483. | Zbl 0359.49007

[017] [18] G. Stefani and P. Zezza, A new type of sufficient optimality conditions for a nonlinear constrained optimal control problem, in: M. Fliess (ed.), Proceedings of the Nonlinear Control System Design Symposium, Bordeaux, 1992, 713-719.

[018] [19] G. Stefani and P. Zezza, Optimal control problems with mixed state-control constraints: necessary conditions, J. Math. Syst. Est. Control 2 (1992), 155-189.

[019] [20] G. Stefani and P. Zezza, The Jacobi condition for LQ-control problems with constraints, in: J. W. Nieuwenhuis, C. Praagman and H. L. Trentelman (eds.), Proceedings of the Second European Control Conference, 1993, 1003-1007.

[020] [21] G. Stefani and P. Zezza, Optimality conditions for a constrained optimal control problem, preprint, University of Florence, DiMaDEFAS, 1993. | Zbl 0859.49023

[021] [22] G. Stefani and P. Zezza, Regular constrained LQ-control problems, preprint #12-94, University of Florence, DiMaDEFAS. | Zbl 0876.49031

[022] [23] J. Warga, Second order necessary conditions in optimization, SIAM J. Control Optim. 22 (1984), 524-528. | Zbl 0549.49020

[023] [24] V. Zeidan, Sufficiency conditions for variational problems with variable endpoints: coupled points, Appl. Math. Optim. 27 (1993), 191-209. | Zbl 0805.49012

[024] [25] V. Zeidan and P. Zezza, Necessary conditions for optimal control problems: conjugate points, SIAM J. Control Optim. 26 (1988), 592-608. | Zbl 0646.49011

[025] [26] V. Zeidan and P. Zezza, Coupled points in optimal control, IEEE Trans. Automat. Control 36 (1991), 1276-1281.

[026] [27] P. Zezza, The Jacobi condition for elliptic forms in Hilbert spaces, J. Optim. Theory Appl. 76 (1993), 357-380. | Zbl 0798.49027