Well-formed dynamics are a generalization of classical dynamics, to which they are equivalent by a quasi-static state feedback. In case such a dynamics is flat, i.e., equivalent by an endogenous feedback to a linear controllable dynamics, there exists a Brunovský type canonical form with respect to a quasi-static state feedback.
@article{bwmeta1.element.bwnjournal-article-bcpv32z1p349bwm, author = {Rudolph, J.}, title = {Well-formed dynamics under quasi-static state feedback}, journal = {Banach Center Publications}, volume = {31}, year = {1995}, pages = {349-360}, zbl = {0838.93016}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv32z1p349bwm} }
Rudolph, J. Well-formed dynamics under quasi-static state feedback. Banach Center Publications, Tome 31 (1995) pp. 349-360. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv32z1p349bwm/
[000] [1] R. Aris, Introduction to the Analysis of Chemical Reactors, Prentice-Hall, Englewood Cliffs, 1965.
[001] [2] M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, Reading, 1969.
[002] [3] P. Brunovský, A classification of linear controllable systems, Kybernetika 6 (1970), 173-187. | Zbl 0199.48202
[003] [4] B. Charlet, J. Lévine and R. Marino, Sufficient conditions for dynamic state feedback linearization, SIAM J. Control Optim. 29 (1991), 38-57. | Zbl 0739.93021
[004] [5] P. M. Cohn, Free Rings and their Relations, 2nd edition, Academic Press, London, 1985. | Zbl 0659.16001
[005] [6] E. Delaleau, Lowering orders of input derivatives in generalized state representations of nonlinear systems, in: Proc. IFAC-Symposium NOLCOS'92, Bordeaux, M. Fliess (ed.), 1992, 209-213.
[006] [7] E. Delaleau et M. Fliess, Algorithme de structure, filtrations et découplage, C. R. Acad. Sci. Paris Sér. I 315 (1992), 101-106. | Zbl 0791.68113
[007] [8] E. Delaleau and W. Respondek, Lowering the orders of derivatives of controls in generalized state space systems, J. Math. Systems Estim. Control, to appear. | Zbl 0852.93016
[008] [9] M. Fliess, Automatique et corps différentiels, Forum Math. 1 (1989), 227-238. | Zbl 0701.93048
[009] [10] M. Fliess, Generalized controller canonical forms for linear and nonlinear dynamics, IEEE Trans. Automat. Control 35 (1990), 994-1001. | Zbl 0724.93010
[010] [11] M. Fliess, Some basic structural properties of generalized linear systems, Systems Control Lett. 15 (1990), 391-396. | Zbl 0727.93024
[011] [12] M. Fliess, Some remarks on a new characterization of linear controllability, in: Prepr. 2nd IFAC Workshop ``System Structure and Control'', Prague, Sept. 1992, 8-11.
[012] [13] M. Fliess, Some remarks on the Brunovský canonical form, Kybernetika 29 (1993), 417-422. | Zbl 0806.93007
[013] [14] M. Fliess, J. Lévine, P. Martin et P. Rouchon, Sur les systèmes non linéaires différentiellement plats, C. R. Acad. Sci. Paris Sér. I 315 (1992), 619-624. | Zbl 0776.93038
[014] [15] S. T. Glad, Nonlinear state space and input output descriptions using differential polynomials, in: New Trends in Nonlinear Control Theory, J. Descusse, M. Fliess, A. Isidori and D. Leborgne (eds.), Lecture Notes Control Inform. Sci. 122, Springer, 1988, 182-189.
[015] [16] A. Isidori, Nonlinear Control Systems: An Introduction, Springer, New York, 1989.
[016] [17] B. Jakubczyk, Dynamic feedback equivalence of nonlinear control systems, preprint. | Zbl 0712.93027
[017] [18] J. Johnson, Differential dimension polynomials and a fundamental theorem on differential modules, Amer. J. Math. 91 (1969), 239-248. | Zbl 0179.34303
[018] [19] J. Johnson, Kähler differentials and differential algebra, Ann. of Math. 89 (1969), 92-98. | Zbl 0179.34302
[019] [20] E. R. Kolchin, Differential Algebra and Algebraic Groups, Academic Press, New York, 1973. | Zbl 0264.12102
[020] [21] A. Krener, Normal forms for linear and nonlinear systems, Contemp. Math. 68 (1987), 157-189.
[021] [22] S. Lang, Algebra, Addison-Wesley, Reading, 1971.
[022] [23] P. Martin, Contribution à l'étude des systèmes différentiellement plats, Thèse, Ecole des Mines de Paris, 1992.
[023] [24] H. Nijmeijer and A. J. van der Schaft, Nonlinear Dynamical Control Systems, Springer, New York, 1990. | Zbl 0701.93001
[024] [25] J. B. Pomet, C. H. Moog, and A. Aranda, A non-exact Brunovský form and dynamic feedback linearization, in: Proc. 31st CDC IEEE, Tucson, 1992, 2012-2017.
[025] [26] J. F. Ritt, Differential Algebra, Amer. Math. Soc., New York, 1950.
[026] [27] P. Rouchon, Necessary condition and genericity of dynamic feedback linearization, J. Math. Systems Estim. Control 4 (1994), 1-14. | Zbl 0818.93012
[027] [28] J. Rudolph, Une forme canonique en bouclage quasi statique, C. R. Acad. Sci. Paris Sér. I 316 (1993), 1323-1328.
[028] [29] J. Rudolph, A canonical form under quasi-static feedback, in: Systems and Networks: Mathematical Theory and Applications, U. Helmke, R. Mennicken, and J. Saurer (eds.), 1993, 445-448. | Zbl 0925.93107
[029] [30] J. Rudolph, Viewing input-output system equivalence from differential algebra, J. Math. Systems Estim. Control 4 (1994), 353-383. | Zbl 0806.93012
[030] [31] J. Rudolph, Duality in time-varying linear systems: a module theoretic approach, Linear Algebra Appl., to appear. | Zbl 0864.93035
[031] [32] J. Rudolph and S. El Asmi, Filtrations and Hilbert polynomials in control theory, in: Systems and Networks: Mathematical Theory and Applications, U. Helmke, R. Mennicken, and J. Saurer (eds.), 1994, 449-452. | Zbl 0925.93133
[032] [33] W. Sluis, Absolute Equivalence and its Applications to Control Theory, PhD Thesis, University of Waterloo, 1992.
[033] [34] M. Zeitz, Canonical forms for nonlinear systems, in: Nonlinear Control Systems Design, Selected Papers from the IFAC-Symposium, Capri/Italy 1989, A. Isidori (ed.), Pergamon Press, Oxford, 1990, 33-38.