Singular perturbations for systems of differential inclusions
Quincampoix, Marc
Banach Center Publications, Tome 31 (1995), p. 341-348 / Harvested from The Polish Digital Mathematics Library

We study a system of two differential inclusions such that there is a singular perturbation in the second one. We state new convergence results of solutions under assumptions concerning contingent derivative of the perturbed inclusion. These results state that there exists at least one family of solutions which converges to some solution of the reduced system. We extend this result to perturbed systems with state constraints.

Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:262848
@article{bwmeta1.element.bwnjournal-article-bcpv32z1p341bwm,
     author = {Quincampoix, Marc},
     title = {Singular perturbations for systems of differential inclusions},
     journal = {Banach Center Publications},
     volume = {31},
     year = {1995},
     pages = {341-348},
     zbl = {0836.34017},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv32z1p341bwm}
}
Quincampoix, Marc. Singular perturbations for systems of differential inclusions. Banach Center Publications, Tome 31 (1995) pp. 341-348. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv32z1p341bwm/

[000] [1] J.-P. Aubin, Viability Theory, Birkhäuser. Boston, Basel, 1992.

[001] [2] J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser, Boston, 1991.

[002] [3] P. Binding, Singularly perturbed optimal control problems.I. Convergence, SIAM J. Control Optim. 14 (1976), 591-612. | Zbl 0329.49004

[003] [4] A. L. Dontchev and I. I. Slavov, Singular perturbation in a class of nonlinear differential inclusions, Proceedings IFIP Conference, Leipzig, 1989, Lecture Notes in Inform. Sci. 143, Springer, Berlin, 1990, 273-280.

[004] [5] A. L. Dontchev and V. M. Veliov, Singular perturbations in linear control systems with weakly coupled stable and unstable fast subsystems, J. Math. Anal. Appl. 110 (1985), 1-130. | Zbl 0576.93031

[005] [6] A. L. Dontchev and V. M. Veliov, Continuity of a family of trajectories of linear control systems with respect to singular perturbations, Soviet Math. Dokl. 35 (1987), 283-286.

[006] [7] N. Dunford and J. Schwartz, Linear Operators, Part I, Wiley, New York.

[007] [8] A. F. Filippov, On some problems of optimal control theory, Vestnik Moskov. Univ. Mat. 1958 (2), 25-32 (in Russian); English transl.: SIAM J. Control 1 (1962), 76-84.

[008] [9] T. F. Filippova and A. B. Kurzhanskiĭ, Methods of singular perturbations for differential inclusions, Dokl. Akad. Nauk SSSR 321 (1991), 454-460 (in Russian).

[009] [10] H. Frankowska, S. Plaskacz and T. Rzeżuchowski, Measurable viability theorems and Hamilton-Jacobi-Bellman equation, J. Differential Equations 116 (1995), 265-305. | Zbl 0836.34016

[010] [11] P. V. Kokotović, Applications of singular perturbation techniques to control problems, SIAM Rev. 26 (1984), 501-550. | Zbl 0548.93001

[011] [12] R. O'Malley, Introduction to Singular Perturbation, Academic Press, 1974.

[012] [13] A. N. Tikhonov, A. B. Vassilieva and A. G. Sveshnikov, Differential Equations, Springer, 1985.

[013] [14] H. Tuan, Asymptotical solution of differential systems with multivalued right-hand side, Ph.D. Thesis, University of Odessa, 1990, in Russian.

[014] [15] M. Quincampoix, Contribution à l'étude des perturbations singulières pour les systèmes contrôlés et les inclusions différentielles, C. R. Acad. Sci. Paris Sér. I 316 (1993), 133-138. | Zbl 0769.93055

[015] [16] M. Quincampoix, Singular perturbations for control systems and for differential inclusions, in: Cahiers Mathématiques de la Décision, Université Paris-Dauphine, 1994.

[016] [17] V. M. Veliov, Differential inclusions with stable subinclusions, Nonlinear Anal. 23 (1994), 1027-1038. | Zbl 0816.34011