A differential geometric setting for dynamic equivalence and dynamic linearization
Pomet, Jean-Baptiste
Banach Center Publications, Tome 31 (1995), p. 319-339 / Harvested from The Polish Digital Mathematics Library

This paper presents an (infinite-dimensional) geometric framework for control systems, based on infinite jet bundles, where a system is represented by a single vector field and dynamic equivalence (to be precise: equivalence by endogenous dynamic feedback) is conjugation by diffeomorphisms. These diffeomorphisms are very much related to Lie-Bäcklund transformations. It is proved in this framework that dynamic equivalence of single-input systems is the same as static equivalence.

Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:262861
@article{bwmeta1.element.bwnjournal-article-bcpv32z1p319bwm,
     author = {Pomet, Jean-Baptiste},
     title = {A differential geometric setting for dynamic equivalence and dynamic linearization},
     journal = {Banach Center Publications},
     volume = {31},
     year = {1995},
     pages = {319-339},
     zbl = {0838.93019},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv32z1p319bwm}
}
Pomet, Jean-Baptiste. A differential geometric setting for dynamic equivalence and dynamic linearization. Banach Center Publications, Tome 31 (1995) pp. 319-339. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv32z1p319bwm/

[000] [1] R. L. Anderson and N. H. Ibragimov, Lie-Bäcklund Transformations in Applications, SIAM Stud. Appl. Math., SIAM, Philadelphia, 1979.

[001] [2] E. Aranda-Bricaire, C. H. Moog and J.-B. Pomet, A linear algebraic framework for dynamic feedback linearization, IEEE Trans. Automat. Control 40 (1995), 127-132. | Zbl 0844.93025

[002] [3] E. Aranda-Bricaire, C. H. Moog and J.-B. Pomet, Infinitesimal Brunovský form for nonlinear systems with applications to dynamic linearization, this volume. | Zbl 0844.93024

[003] [4] N. Bourbaki, Eléments de Mathématique, Espaces Vectoriels Topologiques, chap. 1, Masson, Paris, 1981.

[004] [5] P. Brunovský, A classification of linear controllable systems, Kybernetika 6 (1970), 176-188. | Zbl 0199.48202

[005] [6] B. Charlet, J. Lévine and R. Marino, On dynamic feedback linearization, Systems Control Lett. 13 (1989), 143-151. | Zbl 0684.93043

[006] [7] B. Charlet, J. Lévine and R. Marino, Sufficient conditions for dynamic feedback linearization, SIAM J. Control Optim. 29 (1991), 38-57. | Zbl 0739.93021

[007] [8] G. Conte, A.-M. Perdon and C. Moog, The differential field associated to a general analytic nonlinear system, IEEE Trans. Automat. Control 38 (1993), 1120-1124. | Zbl 0800.93539

[008] [9] E. Delaleau, Sur les dérivées de l'entrée en représentation et commande des systèmes non-linéaires, Thèse de l'Unviversité Paris XI, Orsay, 1993.

[009] [10] M. Fliess, Automatique et corps différentiels, Forum Math. 1 (1989), 227-238. | Zbl 0701.93048

[010] [11] M. Fliess, Décomposition en cascade des systèmes automatiques et feuilletages invariants, Bull. Soc. Math. France 113 (1985), 285-293. | Zbl 0587.93031

[011] [12] M. Fliess, J. Lévine, P. Martin and P. Rouchon, On differentially flat nonlinear systems, in: 2nd IFAC NOLCOS Symposium, 1992, 408-412.

[012] [13] M. Fliess, J. Lévine, P. Martin and P. Rouchon, Sur les systèmes non linéaires différentiellement plats, C. R. Acad. Sci. Paris Sér. I 315 (1992), 619-624. | Zbl 0776.93038

[013] [14] M. Fliess, J. Lévine, P. Martin and P. Rouchon, Linéarisation par bouclage dynamique et transformations de Lie-Bäcklund, ibid., to appear.

[014] [15] M. Fliess, J. Lévine, P. Martin and P. Rouchon, Towards a new differential geometric setting in nonlinear control, Presented at International Geometrical Colloquium, Moscow, May 1993, and to appear in the proceedings.

[015] [16] E. Goursat, Le problème de Bäcklund, Mém. Sci. Math. 6, Gauthier-Villars, Paris, 1925.

[016] [17] R. S. Hamilton, The Inverse Function Theorem of Nash and Moser, Bull. Amer. Math. Soc. 7 (1982), 65-222. | Zbl 0499.58003

[017] [18] B. Jakubczyk, Remarks on equivalence and linearization of nonlinear systems, in: 2nd IFAC NOLCOS Symposium, 1992, 393-397.

[018] [19] B. Jakubczyk, Dynamic feedback equivalence of nonlinear control systems, preprint, 1993.

[019] [20] I. S. Krasil'shchik, V. V. Lychagin and A. M. Vinogradov, Geometry of Jet Spaces and Nonlinear Partial Differential Equations, Adv. Stud. Contemp. Math. 1, Gordon & Breach, 1986.

[020] [21] P. Martin, Contribution à l'étude des systèmes non linéaires différentiellement plats, Thèse de Doctorat, Ecole des Mines de Paris, 1992.

[021] [22] P. Otterson and G. Svetlichny, On derivative-dependent deformations of differential maps, J. Differential Equations 36 (1980), 270-294. | Zbl 0406.58029

[022] [23] F. A. E. Pirani, D. C. Robinson and W. F. Shadwick, Local jet bundle formulation of Bäcklund transformations, Math. Phys. Stud., Reidel, Dordrecht, 1979. | Zbl 0427.58003

[023] [24] J.-B. Pomet, C. H. Moog and E. Aranda, A non-exact Brunovský form and dynamic feedback linearization, in: Proc. 31st. IEEE Conf. Dec. Cont., 1992, 2012-2017.

[024] [25] J.-F. Pommaret, Géométrie différentielle algébrique et théorie du contrôle, C. R. Acad. Sci. Paris Sér. I 302 (1986), 547-550. | Zbl 0594.93030

[025] [26] D. J. Saunders, The Geometry of Jet Bundles, London Math. Soc. Lecture Note Ser. 142, Cambridge University Press, Cambridge, 1989. | Zbl 0665.58002

[026] [27] W. F. Shadwick, Absolute equivalence and dynamic feedback linearization, Systems Control Lett. 15 (1990), 35-39. | Zbl 0704.93037

[027] [28] A. M. Vinogradov, Local symmetries and conservation laws, Acta Appl. Math. 2 (1984), 21-78. | Zbl 0534.58005

[028] [29] J. C. Willems, Paradigms and puzzles in the theory of dynamical systems, IEEE Trans. Automat. Control 36 (1991), 259-294. | Zbl 0737.93004