Forward invariant sets, homogeneity and small-time local controllability
Krastanov, Mikhail
Banach Center Publications, Tome 31 (1995), p. 287-300 / Harvested from The Polish Digital Mathematics Library

The property of forward invariance of a subset of Rn with respect to a differential inclusion is characterized by using the notion of a perpendicular to a set. The obtained results are applied for investigating the dependence of the small-time local controllability of a homogeneous control system on parameters.

Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:262846
@article{bwmeta1.element.bwnjournal-article-bcpv32z1p287bwm,
     author = {Krastanov, Mikhail},
     title = {Forward invariant sets, homogeneity and small-time local controllability},
     journal = {Banach Center Publications},
     volume = {31},
     year = {1995},
     pages = {287-300},
     zbl = {0839.93010},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv32z1p287bwm}
}
Krastanov, Mikhail. Forward invariant sets, homogeneity and small-time local controllability. Banach Center Publications, Tome 31 (1995) pp. 287-300. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv32z1p287bwm/

[000] [1] P. Brunovský, Local controllability of odd systems, in: Banach Center Publ. 1, PWN, Warszawa, 1976, 39-45. | Zbl 0344.93016

[001] [2] R. Bianchini and G. Stefani, Sufficient conditions on local controllability, in: Proc. 25th IEEE Conf. Decision & Control, Athens, 1986, 967-970.

[002] [3] R. Bianchini and G. Stefani, Graded approximations and controllability along a trajectory, SIAM J. Control Optim. 28 (1990), 903-924. | Zbl 0712.93005

[003] [4] R. Bianchini and G. Stefani, Self-accessibility of a set with respect to a multivalued field, J. Optim. Theory Appl. 31 (1980), 535-552. | Zbl 0417.49048

[004] [5] F. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983. | Zbl 0582.49001

[005] [6] H. Hermes, Control systems with generate decomposable Lie algebras, J. Differential Equations 44 (1982), 166-187. | Zbl 0496.49021

[006] [7] H. Hermes, Nilpotent and high-order approximations of vector field systems, SIAM Rev. 33 (1991), 238-264. | Zbl 0733.93062

[007] [8] M. Kawski, A necessary condition for local controllability, Contemp. Math. 68 (1987), 143-155.

[008] [9] M. Kawski, High-order small time local controllability, in: Nonlinear Controllability and Optimal Control, H. Sussmann (ed.), Marcel Dekker, New York, 1990, 431-467.

[009] [10] M. Krastanov, A necessary condition for local controllability, C. R. Acad. Bulgare Sci. 41 (7) (1988), 13-15. | Zbl 0850.93098

[010] [11] C. Lobry, Sur l'ensemble des points atteignables par les solutions d'une équation différentielle multivoque, Publ. Math. Bordeaux 1 (5) (1973).

[011] [12] G. Stefani, On the local controllability of a scalar input control system, in: Theory and Applications of Nonlinear Control Systems, C. Byrnes and A. Lindquist (eds.), Elsevier Science Publ., 1986, 167-179.

[012] [13] G. Stefani, Polynomial approximation to control systems and local controllability, in: Proc. 25th IEEE Conf. on Decision & Control, Ft. Landerdale, 1985, 33-38.

[013] [14] H. Sussmann, Small-time local controllability and continuity of the optimal time function for linear systems, J. Optim. Theory Appl. (1988), 281-297. | Zbl 0596.93012

[014] [15] H. Sussmann, Lie brackets and local controllability: a sufficient condition for scalar-input systems, SIAM J. Control Optim. 21 (1983), 686-713. | Zbl 0523.49026

[015] [16] H. Sussmann, A general theorem on local controllability, ibid. 25 (1987), 158-194. | Zbl 0629.93012

[016] [17] V. Veliov, On the controllability of control constrained linear systems, Math. Balkanica 2 (2-3) (1988), 147-155. | Zbl 0681.93009

[017] [18] V. Veliov, On the Lipschitz continuity of the value function in optimal control, to appear. | Zbl 0901.49022

[018] [19] V. Veliov and M. Krastanov, Controllability of piecewise linear systems, Systems Control Lett. 7 (1986), 335-341. | Zbl 0609.93006