Strong and weak solutions to stochastic inclusions
Kisielewicz, Michał
Banach Center Publications, Tome 31 (1995), p. 277-286 / Harvested from The Polish Digital Mathematics Library

Existence of strong and weak solutions to stochastic inclusions xt-xsstFτ(xτ)dτ+stGτ(xτ)dwτ+stnHτ,z(xτ)q(dτ,dz) and xt-xsstFτ(xτ)dτ+stGτ(xτ)dwτ+st|z|1Hτ,z(xτ)q(dτ,dz)+st|z|>1Hτ,z(xτ)p(dτ,dz), where p and q are certain random measures, is considered.

Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:262679
@article{bwmeta1.element.bwnjournal-article-bcpv32z1p277bwm,
     author = {Kisielewicz, Micha\l },
     title = {Strong and weak solutions to stochastic inclusions},
     journal = {Banach Center Publications},
     volume = {31},
     year = {1995},
     pages = {277-286},
     zbl = {0837.93068},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv32z1p277bwm}
}
Kisielewicz, Michał. Strong and weak solutions to stochastic inclusions. Banach Center Publications, Tome 31 (1995) pp. 277-286. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv32z1p277bwm/

[000] [1] A. V. Skorohod, Studies in the Theory of Random Processes, Dover, New York, 1982.

[001] [2] M. Kisielewicz, Differential Inclusions and Optimal Control, Kluwer Acad. Publ. and Polish Sci. Publ., Warszawa-Dordrecht, 1991. | Zbl 0731.49001

[002] [3] M. Kisielewicz, Properties of solution set of stochastic inclusions, J. Appl. Math. Stochastic Anal. 6 (1993), 217-236. | Zbl 0796.93106

[003] [4] M. Kisielewicz, Existence of strong solutions to stochastic inclusions, Discuss. Math. 15 (submitted).

[004] [5] P. Protter, Stochastic Integration and Differential Equations, Springer, Berlin, 1990.