Horizontal systems of rays arise in the study of integral curves of Hamiltonian systems on T*X, which are tangent to a given distribution V of hyperplanes on X. We investigate the local properties of systems of rays for general pairs (H,V) as well as for Hamiltonians H such that the corresponding Hamiltonian vector fields are horizontal with respect to V. As an example we explicitly calculate the space of horizontal geodesics and the corresponding systems of rays for the canonical distribution on the Heisenberg group. Local stability of systems of horizontal rays based on the standard singularity theory of Lagrangian submanifolds is also considered.
@article{bwmeta1.element.bwnjournal-article-bcpv32z1p245bwm, author = {Janeczko, S.}, title = {Systems of rays in the presence of distribution of hyperplanes}, journal = {Banach Center Publications}, volume = {31}, year = {1995}, pages = {245-260}, zbl = {0844.57030}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv32z1p245bwm} }
Janeczko, S. Systems of rays in the presence of distribution of hyperplanes. Banach Center Publications, Tome 31 (1995) pp. 245-260. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv32z1p245bwm/
[000] [1] V. I. Arnold, S. M. Gusein-Zade and A. N. Varchenko, Singularities of Differentiable Maps, Vol. 1, Birkhäuser, Boston, 1985. | Zbl 1297.32001
[001] [2] V. I. Arnold, Lagrangian submanifolds with singularities, asymptotic rays and the open swallowtail, Funktsional. Anal. i Prilozhen. 15 (4) (1981), 1-14 (in Russian).
[002] [3] S. Bloch, The dilogarithm and extensions of Lie algebras, in: Lecture Notes in Math. 854, Springer 1981, 1-23.
[003] [4] Yu. V. Chekanov, Caustics in geometrical optics, Functional. Anal. Appl. 30 (1986), 223-226. | Zbl 0622.58004
[004] [5] J. Guckenheimer, Caustics and nondegenerate Hamiltonians, Topology 13 (1974), 127-133. | Zbl 0291.58010
[005] [6] V. Guillemin and S. Sternberg, Symplectic Techniques in Physics, Cambridge Univ. Press, Cambridge, 1984. | Zbl 0576.58012
[006] [7] S. Janeczko, Generalized Luneburg canonical varieties and vector fields on quasicaustics, J. Math. Phys. 31 (1991), 997-1009. | Zbl 0714.58051
[007] [8] S. Janeczko and R. Montgomery, On systems of gliding rays in sub-Riemannian geometry, to appear.
[008] [9] J. E. Marsden, Lectures on Mechanics, London Math. Soc. Lecture Note Ser. 174, Cambridge Univ. Press 1992. | Zbl 0744.70004
[009] [10] J. Martinet, Singularities of Smooth Functions and Maps, Cambridge Univ. Press, Cambridge, 1982.
[010] [11] J. Martinet, Sur les singularités des formes différentielles, Ann. Inst. Fourier (Grenoble) 20 (1970), 95-178. | Zbl 0189.10001
[011] [12] J. Mitchell, On Carnot-Carathéodory metrics, J. Differential Geometry 21 (1985), 35-45. | Zbl 0554.53023
[012] [13] R. S. Strichartz, Sub-Riemannian geometry, ibid. 24 (1986), 221-263. | Zbl 0609.53021
[013] [14] R. S. Strichartz, Corrections to 'Sub-Riemannian Geometry' ibid. 30 (1989), 595-596.
[014] [15] A. Weinstein, Lectures on Symplectic Manifolds, CBMS Regional Conf. Ser. in Math. 29, Amer. Math. Soc., 1977.
[015] [16] A. M. Vershik and V. Ya. Gershkovich, Non-holonomic Riemannian manifolds, in: Dynamical Systems 7, Mathematical Encyclopaedia, vol. 16, 1987 (in Russian).