Genericity of observability and the existence of asymptotic observers
Gauthier, J. ; Kupka, I
Banach Center Publications, Tome 31 (1995), p. 227-244 / Harvested from The Polish Digital Mathematics Library

In this paper, we deal with the genericity of the observability property and the existence of asymptotic observers for nonlinear systems. In the case where the number of outputs is larger than the number of inputs and the state space is compact, we prove that observability in a very strong sense (more or less, observability for each sufficiently differentiable input) is generic. This is obtained by using standard (but not easy) transversality arguments. For the inputs that are bounded with their derivatives up to some order, we prove the generic existence of an asymptotic observer with arbitrary exponential decay of the error.

Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:262690
@article{bwmeta1.element.bwnjournal-article-bcpv32z1p227bwm,
     author = {Gauthier, J. and Kupka, I},
     title = {Genericity of observability and the existence of asymptotic observers},
     journal = {Banach Center Publications},
     volume = {31},
     year = {1995},
     pages = {227-244},
     zbl = {0839.93020},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv32z1p227bwm}
}
Gauthier, J.; Kupka, I. Genericity of observability and the existence of asymptotic observers. Banach Center Publications, Tome 31 (1995) pp. 227-244. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv32z1p227bwm/

[000] [A] D. Aeyels, Generic observability of differentiable systems, SIAM J. Control Optim. 19 (1981), 1-15. | Zbl 0474.93016

[001] [AR] R. Abraham and J. Robbin, Transversal Mappings and Flows, Benjamin, 1967. | Zbl 0171.44404

[002] [GHK] J. P. Gauthier, H. Hammouri and I. Kupka, Observers for nonlinear systems, IEEE CDC Conference, Brighton, 1991, 1483-1489.

[003] [GHO] J. P. Gauthier, H. Hammouri and S. Othman, A simple observer for nonlinear systems, application to bioreactors, IEEE Trans. Automat. Control 37 (1992), 875-880. | Zbl 0775.93020

[004] [GK] J. P. Gauthier and I. Kupka, Observability and observers for nonlinear systems, SIAM J. Control Optim. 32 (1994), 975-995. | Zbl 0802.93008

[005] [HG1] H. Hammouri and J. P. Gauthier, Bilinearization up to output injection, Systems Control Letters 11 (1988), 139-149. | Zbl 0648.93024

[006] [HG2] H. Hammouri and J. P. Gauthier, Global time varying linearization up to output injection, SIAM J. Control 6 (1992), 1295-1310. | Zbl 0771.93033

[007] [HIR] M. W. Hirsch, Differential Topology, Springer, 1976.

[008] [KI] A. Krener and A. Isidori, Linearization by output injection and nonlinear observers, Systems Control Letters 3 (1983), 47-52. | Zbl 0524.93030

[009] [KR] A. Krener and W. Respondek, Nonlinear observers with linearizable error dynamics, SIAM J. Control Optim. 23 (1985), 197-216. | Zbl 0569.93035

[010] [L] S. Łojasiewicz, Triangulation of semi-analytic sets, Ann. Scuola Norm. Sup. PISA, 1964, 449-474. | Zbl 0128.17101

[011] [LU] D. G. Luenberger, Observers for multivariable systems, IEEE Trans. Automat. Control 11 (1966), 190-197.

[012] [S] H. Sussmann, Single input observability of continuous time systems, Math. Systems Theory 12 (1979), 263-284. | Zbl 0422.93019

[013] [T] F. Takens, Detecting strange attractors in turbulence, in: Dynamic Systems and Turbulence, Warwick 1980, Springer, Berlin, 1981, 366-381.

[014] [TC] K. Tchon, On solvability of several affine systems, Systems Control Letters 4 (1984), 373-379. | Zbl 0544.93031

[015] [TOU] J. C. Tougeron, Idéaux de fonctions différentiables, Springer, 1972. | Zbl 0251.58001

[016] [WH] H. Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc. 36 (1934), 63-89. | Zbl 0008.24902