Infinitesimal Brunovský form for nonlinear systems with applications to Dynamic Linearization
Aranda-Bricaire, E. ; Moog, C. ; Pomet, J.
Banach Center Publications, Tome 31 (1995), p. 19-33 / Harvested from The Polish Digital Mathematics Library

We define, in an infinite-dimensional differential geometric framework, the 'infinitesimal Brunovský form' which we previously introduced in another framework and link it with equivalence via diffeomorphism to a linear system, which is the same as linearizability by 'endogenous dynamic feedback'.

Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:262767
@article{bwmeta1.element.bwnjournal-article-bcpv32z1p19bwm,
     author = {Aranda-Bricaire, E. and Moog, C. and Pomet, J.},
     title = {Infinitesimal Brunovsk\'y form for nonlinear systems with applications to Dynamic Linearization},
     journal = {Banach Center Publications},
     volume = {31},
     year = {1995},
     pages = {19-33},
     zbl = {0844.93024},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv32z1p19bwm}
}
Aranda-Bricaire, E.; Moog, C.; Pomet, J. Infinitesimal Brunovský form for nonlinear systems with applications to Dynamic Linearization. Banach Center Publications, Tome 31 (1995) pp. 19-33. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv32z1p19bwm/

[000] [1] E. Aranda, C. H. Moog and J.-B. Pomet, A linear algebraic framework for dynamic feedback linearization, IEEE Trans. Automatic Control, 40 (1995), 127-132. | Zbl 0844.93025

[001] [2] E. Aranda, C. H. Moog and J.-B. Pomet, Feedback linearization: a linear algebraic approach, in: 22nd IEEE Conf. on Dec. and Cont., Dec. 1993. | Zbl 0844.93025

[002] [3] P. Brunovský, A classification of linear controllable systems, Kybernetika 6 (1970), 176-188. | Zbl 0199.48202

[003] [4] B. Charlet, J. Lévine and R. Marino, On dynamic feedback linearization, Syst. & Contr. Lett. 13 (1989), 143-151. | Zbl 0684.93043

[004] [5] B. Charlet, J. Lévine and R. Marino, Sufficient conditions for dynamic feedback linearization, SIAM J. Contr. Opt. 29 (1991), 38-57. | Zbl 0739.93021

[005] [6] J.-M. Coron, Linearized control systems and applications to smooth stabilization, SIAM J. Contr. Opt. 32 (1994), 358-386. | Zbl 0796.93097

[006] [7] M. D. Di Benedetto, J. Grizzle and C. H. Moog, Rank invariants of nonlinear systems, SIAM J. Contr. Opt. 27 (1989), 658-672. | Zbl 0696.93033

[007] [8] M. Fliess, Automatique et corps différentiels, Forum Math. 1 (1989), 227-238. | Zbl 0701.93048

[008] [9] M. Fliess, Some remarks on the Brunovský canonical form, preprint, L.S.S., Ec. Sup. d'Elec., Gif-sur-Yvette, France, 1992, to appear in Kybernetika.

[009] [10] M. Fliess and S. T. Glad, An algebraic approach to linear and nonlinear control, in: H. L. Trentelman and J. C. Willems (eds.), Essays on Control: Perspectives in the Theory and its Applications, PSCT 14, Birkhäuser, Boston, 1993. | Zbl 0838.93021

[010] [11] M. Fliess, J. Lévine, P. Martin and P. Rouchon, On differentially flat nonlinear systems, in: 2nd. IFAC NOLCOS Symposium, 1992, 408-412.

[011] [12] M. Fliess, J. Lévine, P. Martin and P. Rouchon, Sur les systèmes non linéaires différentiellement plats, C. R. Acad. Sc. Paris, 315-I (1992), 619-624. | Zbl 0776.93038

[012] [13] A. Ilchmann, I. Nürnberger and W. Schmale, Time-varying polynomial matrix systems, Int. J. Control 40 (1984), 329-362. | Zbl 0545.93045

[013] [14] B. Jakubczyk, Remarks on equivalence and linearization of nonlinear systems, in: 2nd. IFAC NOLCOS Symposium, 1992, 393-397.

[014] [15] B. Jakubczyk, Dynamic feedback equivalence of nonlinear control systems, preprint, 1993.

[015] [16] P. Martin, Contribution à l'étude des systèmes non linéaires différentiellement plats, Thèse de Doctorat, Ecole des Mines de Paris, 1992.

[016] [17] P. Martin, A geometric sufficient conditions for flatness of systems with m inputs and m+1 states, in: 22nd IEEE Conf. on Dec. and Cont., Dec. 1993, 3431-3435.

[017] [18] P. Martin, A criterion for flatness with structure {1,...,1,2}, preprint, 1992.

[018] [19] P. Martin and P. Rouchon, Systems without drift and flatness, in: Int. Symp. on Math. Theory on Networks and Syst., Regensburg, August 1993. | Zbl 0925.93294

[019] [20] J.-B. Pomet, On dynamic feedback linearization of four-dimensional affine control systems with two inputs, preprint, 1993, INRIA report No 2314.

[020] [21] J.-B. Pomet, A differential geometric setting for dynamic equivalence and dynamic linearization, this volume, 319-339. | Zbl 0838.93019

[021] [22] J.-B. Pomet, C. H. Moog and E. Aranda, A non-exact Brunovský form and dynamic feedback linearization, in: Proc. 31st. IEEE Conf. Dec. Cont., 1992, 2012-2017.

[022] [23] E. D. Sontag, Finite-dimensional open-loop control generators for nonlinear systems, Int. J. Control 47 (1988), 537-556. | Zbl 0641.93035

[023] [24] H. J. Sussmann and V. Jurdjevic, Controllability of nonlinear systems, J. Diff. Eq. 12 (1972), 95-116. | Zbl 0242.49040

[024] [25] W. A. Wolovich, Linear Multivariable Systems, Applied Math. Sci. 11, Springer, 1974. | Zbl 0291.93002