Solvable optimal control of Brownian motion in symmetric spaces and spherical polynomials
Duncan, T.
Banach Center Publications, Tome 31 (1995), p. 183-197 / Harvested from The Polish Digital Mathematics Library
Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:262592
@article{bwmeta1.element.bwnjournal-article-bcpv32z1p183bwm,
     author = {Duncan, T.},
     title = {Solvable optimal control of Brownian motion in symmetric spaces and spherical polynomials},
     journal = {Banach Center Publications},
     volume = {31},
     year = {1995},
     pages = {183-197},
     zbl = {0856.93106},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv32z1p183bwm}
}
Duncan, T. Solvable optimal control of Brownian motion in symmetric spaces and spherical polynomials. Banach Center Publications, Tome 31 (1995) pp. 183-197. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv32z1p183bwm/

[000] [1] V. E. Benes, L. A. Shepp and H. S. Witsenhausen, Some solvable stochastic control problems, Stochastics 4 (1980), 39-83. | Zbl 0451.93068

[001] [2] A. Bensoussan and J. H. van Schuppen, Optimal control of partially observable stochastic systems with an exponential-of-integral performance index, SIAM J. Control Optim. 23 (1985), 599-613. | Zbl 0574.93067

[002] [3] E. Cartan, Sur certaines formes riemanniennes remarquables des géométries à groupe fondamental simple, Ann. Sci. Ecole Norm. Sup. 44 (1927), 345-467. | Zbl 53.0393.01

[003] [4] T. E. Duncan, Dynamic programming optimality criteria for stochastic systems in Riemannian manifolds, Appl. Math. Optim. 3 (1977), 191-208. | Zbl 0403.49025

[004] [5] T. E. Duncan, Stochastic systems in Riemannian manifolds, J. Optim. Theory Appl. 27 (1979), 399-426. | Zbl 0377.93072

[005] [6] T. E. Duncan, A solvable stochastic control problem in hyerbolic three space, Systems Control Lett. 8 (1987), 435-439. | Zbl 0624.93077

[006] [7] T. E. Duncan, A solvable stochastic control problem in spheres, in: Contemp. Math. 73, Amer. Math. Soc., 1988, 49-54 | Zbl 0657.93079

[007] [8] T. E. Duncan, Some solvable stochastic control problems in compact symmetric spaces of rank one, in: Contemp. Math. 97 Amer. Math. Soc., 1989, 79-96.

[008] [9] T. E. Duncan, Some solvable stochastic control problems in noncompact symmetric spaces of rank one, Stochastics and Stochastic Rep. 35 (1991), 129-142. | Zbl 0728.60081

[009] [10] T. E. Duncan, A solvable stochastic control problem in the hyperbolic plane, J. Math. Sys. Estim. Control 2 (1992), 445-452.

[010] [11] T. E. Duncan, A solvable stochastic control problem in real hyperbolic three space II, Ulam Quart. 1 (1992), 13-18.

[011] [12] T. E. Duncan and H. Upmeier, Stochastic control problems in symmetric cones and spherical functions, in: Diffusion Processes and Related Problems in Analysis I, Birkhäuser, 1990, 263-283. | Zbl 0725.93086

[012] [13] T. E. Duncan and H. Upmeier, Explicitly solvable stochastic control problems in symmetric spaces of higher rank, Trans. Amer. Math. Soc., to appear. | Zbl 0850.93887

[013] [14] J. Faraut and A. Korányi, Analysis on Symmetric Cones, to appear. | Zbl 0841.43002

[014] [15] W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Control, Springer, New York, 1975.

[015] [16] Harish-Chandra, Spherical functions on a semi-simple Lie group I, Amer. J. Math. 80 (1958), 241-310.

[016] [17] U. G. Haussman, Some examples of optimal stochastic controls or: the stochastic maximum principle at work, SIAM Rev. 23 (1981), 292-307.

[017] [18] S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New York, 1978. | Zbl 0451.53038

[018] [19] S. Helgason, Groups and Geometric Analysis, Academic Press, New York, 1984. | Zbl 0543.58001

[019] [20] I. Macdonald, Symmetric Functions and Hall Polynomials, Clarendon Press, Oxford, 1979.

[020] [21] R. C. Merton, Optimum consumption and portfolio rules in a continuous-time model, J. Economic Theory 3 (1971), 373-413. | Zbl 1011.91502