Toward a notion of canonical form for nonlinear systems
Conte, G. ; Perdon, A. ; Moog, C.
Banach Center Publications, Tome 31 (1995), p. 149-165 / Harvested from The Polish Digital Mathematics Library
Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:262567
@article{bwmeta1.element.bwnjournal-article-bcpv32z1p149bwm,
     author = {Conte, G. and Perdon, A. and Moog, C.},
     title = {Toward a notion of canonical form for nonlinear systems},
     journal = {Banach Center Publications},
     volume = {31},
     year = {1995},
     pages = {149-165},
     zbl = {0838.93020},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv32z1p149bwm}
}
Conte, G.; Perdon, A.; Moog, C. Toward a notion of canonical form for nonlinear systems. Banach Center Publications, Tome 31 (1995) pp. 149-165. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv32z1p149bwm/

[000] [1] G. Conte, C. H. Moog, A. M. Perdon and Y. F. Zheng, A generalized state space decomposition of nonlinear systems, in: Proc. 31st CDC IEEE, Tucson, 1992, 3676-3677.

[001] [2] E. Delaleau and M. Fliess, An algebraic interpration of the structure algorithm with an application to feedback decoupling, in: Nonlinear Control Systems Design IFAC Symposium, Bordeaux, 1992, 489-494.

[002] [3] M. D. Di Benedetto, J. W. Grizzle and C. H. Moog, Rank invariants for nonlinear systems, SIAM J. Control Optim. 27 (1989), 658-672. | Zbl 0696.93033

[003] [4] S. Diop and M. Fliess, On nonlinear observability, in: European Control Conference, Grenoble, 1991, 152-157

[004] [5] M. Fliess, Nonlinear control theory and differential algebra, in: Proc. I.I.A.S.A. Conference on Modelling and Adaptive Control, Sopron, Hungary, 1986.

[005] [6] M. Fliess, Automatique et corps différentiels, Forum Math. 1 (1989), 227-238. | Zbl 0701.93048

[006] [7] M. Fliess, Généralisation nonlinéaire de la forme canonique de commande et linéarisation par bouclage, C. R. Acad. Sci. Paris 308 (1989), 377-379. | Zbl 0664.93038

[007] [8] M. Fliess, Generalized controller canonical forms for linear and nonlinear dynamics, I.E.E.E. Trans. Automat. Control 35 (1990), 994-1001. | Zbl 0724.93010

[008] [9] H. Hammouri and J. P. Gauthier, Bilinearization up to output injection, Systems and Control Lett. 11 (1988), 139-149. | Zbl 0648.93024

[009] [10] H. Hammouri and J. P. Gauthier, Global time-varying linearization up to output injection, SIAM J. Control Optim. 30 (1992), 1295-1310. | Zbl 0771.93033

[010] [11] R. Hermann and A. J. Krener, Nonlinear controllability and observability, IEEE Trans. Automat Control AC-22 (1977), 728-740. | Zbl 0396.93015

[011] [12] A. Isidori, Nonlinear feedback, structure at infinity and the input-output linearization problem, in: Proc. MTNS 83, Beer Sheva, Lecture Notes in Control and Inform. Sci. 58, Springer, Berlin, 1984, 473-493. | Zbl 0538.93029

[012] [13] A. Isidori, Control of nonlinear systems via dynamic state-feedback, in: Algebraic and Geometric Methods in Nonlinear Control Theory, M. Fliess and M. Hazewinkel (eds.), Reidel, Dordrecht, 1986, 121-145.

[013] [14] A. Isidori, Nonlinear Control Systems, 2nd ed., Springer, Berlin, 1989.

[014] [15] A. Isidori and C. H. Moog, On the equivalence of the notion of transmission zeros, in: Modelling and Adaptive Contro, Proc. IIASA Conf., Sopron, Hungary, C. I. Byrnes and A. Kurszanski (eds.), Lecture Notes Control and Inform. Sci. 105, Springer, 1988, Berlin, 146-158.

[015] [16] T. Kailath, Linear Systems, Prentice-Hall, New York, 1980.

[016] [17] A. J. Krener, Normal form for linear and nonlinear sytems, in: Contemp. Math. 68, Amer. Math. Soc., 1987, 157-189.

[017] [18] A. J. Krener and A. Isidori, Linearization by output injection and nonlinear observers, Systems Control Lett. 3 (1983), 47-52. | Zbl 0524.93030

[018] [19] R. Marino, W. Respondek and A. J. van der Shaft, Equivalence of nonlinear systems to input-output prime forms, SIAM J. Control Optim., to appear. | Zbl 0796.93049

[019] [20] C. H. Moog, F. Plestan, G. Conte and A. M. Perdon, On canonical forms of nonlinear systems, in: Proc. ECC 93, Groningen, 1993, 1514-1517.

[020] [21] A. S. Morse, Structural invariants of linear multivariable systems, SIAM J. Control Optim. 11 (1973), 446-465. | Zbl 0259.93011

[021] [22] H. Nijmeijer and A. J. van der Shaft, Nonlinear Dynamics Control Systems, Springer, 1990.

[022] [23] A. M. Perdon, G. Conte and C. H. Moog, Some canonical properties of nonlinear systems, in: Realization and Modelling in System Theory, Proc. MTNS 89, Amsterdam, 1989, 89-96.

[023] [24] A. M. Perdon, Y. F. Zheng, C. H. Moog and G. Conte, Disturbance decoupling for nonlinear systems: a unified approach, Kybernetica 29 (1993), 479-484. | Zbl 0849.93015

[024] [25] W. Respondek, personal communication, 1994.

[025] [26] J. Rudolph, Une forme canonique en bouclage quasi-statique, C.R. Acad. Sci. Paris 316 (1993), 1323-1328. | Zbl 0778.93010

[026] [27] S. N. Singh, A modified algorithm for invertibility in nonlinear systems, IEEE Trans. Automat. Control AC-26 (1981), 595-598. | Zbl 0488.93026

[027] [28] M. Zeitz, Canonical forms for nonlinear systems, in: Geometric Theory of Nonlinear Control Systems, B. Jakubczyk, W. Respondek and K. Tchon (eds.), Wrocław, Wydawnictwo Politechniki Wrocławskiej, 1985.

[028] [29] Y. F. Zheng and L. Cao, Transfer structure of nonlinear systems, Tech. Rep., East China Normal Univ., 1993.