The region of asymptotic null controllability of bilinear systems with control constraints is characterized using Lyapunov exponents. It is given by the cone over the region of attraction of the maximal control set in projective space containing zero in its spectral interval.
@article{bwmeta1.element.bwnjournal-article-bcpv32z1p139bwm, author = {Colonius, Fritz and Kliemann, Wolfgang}, title = {Asymptotic null controllability of bilinear systems}, journal = {Banach Center Publications}, volume = {31}, year = {1995}, pages = {139-148}, zbl = {0837.93050}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv32z1p139bwm} }
Colonius, Fritz; Kliemann, Wolfgang. Asymptotic null controllability of bilinear systems. Banach Center Publications, Tome 31 (1995) pp. 139-148. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv32z1p139bwm/
[000] [1] L. Arnold, H. Crauel and J.-P. Eckmann (eds.), Lyapunov Exponents, Lecture Notes in Math. 1486, Springer, 1991.
[001] [2] L. Arnold and V. Wihstutz, Lyapunov Exponents, Lecture Notes in Math. 1186, Springer, 1986.
[002] [3] B. F. Bylov, R. E. Vinograd, D. M. Grobman, V. V. Nemytskiĭ, Theory of Lyapunov Exponents, Nauka, Moscow, 1966 (in Russian).
[003] [4] L. Cesari, Asymptotic Behavior and Stability Problems in Ordinary Differential Equations, 3rd ed., Springer, 1971. | Zbl 0215.13802
[004] [5] R. Chabour, G. Sallet and J. C. Vivalda, Stabilization of nonlinear systems: a bilinear approach, Math. Control Syst. Signals (1993), to appear. | Zbl 0797.93038
[005] [6] F. Colonius and W. Kliemann, Infinite time optimal control and periodicity, Appl. Math. Optim. 20 (1989), 113-130. | Zbl 0685.49002
[006] [7] F. Colonius and W. Kliemann, Maximal and minimal Lyapunov exponents of bilinear control, J. Differential Equations 101 (1993), 232-275. | Zbl 0769.34037
[007] [8] F. Colonius and W. Kliemann, Linear control semigroups acting on projective space, J. Dynamics Differential Equations 5 (1993), 495-528. | Zbl 0784.34049
[008] [9] F. Colonius and W. Kliemann, Controllability and stabilization of one dimensional systems, Systems Control Lett. 24 (1995), 87-95. | Zbl 0877.93091
[009] [10] F. Colonius and W. Kliemann, The Morse spectrum of linear flows on vector bundles, Trans. Amer. Math. Soc. (1995), to appear. | Zbl 0864.58051
[010] [11] F. Colonius and W. Kliemann, The Lyapunov spectrum of families of time-varying matrices, Trans. Amer. Math. Soc. (1995), to appear. | Zbl 0873.93054
[011] [12] J. P. Eckmann and D. Ruelle, Ergodic theory of chaos and strange attractors, Rev. Mod. Phys. 57 (1985), 617-656. | Zbl 0989.37516
[012] [13] J. P. Gauthier, I. Kupka and G. Sallet, Controllability of right invariant systems on real semi simple Lie groups, Systems Control Lett. 5 (1984), 187-190. | Zbl 0552.93010
[013] [14] W. Hahn, The Stability of Motion, Springer, 1967. | Zbl 0189.38503
[014] [15] E. C. Joseph, Stability radii of two dimensional bilinear systems, Ph. D. Thesis, Department of Mathematics, Iowa State, 1993.
[015] [16] A. M. Lyapunov, Problème générale de la stabilité du mouvement, Comm. Soc. Math. Kharkov 2 (1892).
[016] [17] V. I. Oseledeč, A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems, Trans. Moscow Math. Soc 19 (1968), 197-231.
[017] [18] E. D. Sontag, Feedback stabilization of nonlinear systems, in: Robust Control of Linear Systems and Nonlinear Control, M. A. Kashoek, J. H. van Schuppen, A. C. Ran (eds.), Birkhäuser, 1990, 61-81. | Zbl 0735.93063