A normal form for small CR-deformations of the standard CR-structure on the (2n+1)-sphere is presented. The space of normal forms is parameterized by a single function on the sphere. For n>1, the normal form is used to obtain explicit embeddings into . For n=1, the cohomological obstruction to embeddability is identified.
@article{bwmeta1.element.bwnjournal-article-bcpv31z1p99bwm, author = {Bland, John and Duchamp, Tom}, title = {Contact geometry and CR-structures on spheres}, journal = {Banach Center Publications}, volume = {31}, year = {1995}, pages = {99-113}, zbl = {0831.32011}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv31z1p99bwm} }
Bland, John; Duchamp, Tom. Contact geometry and CR-structures on spheres. Banach Center Publications, Tome 31 (1995) pp. 99-113. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv31z1p99bwm/
[000] [B] J. Bland, Contact geometry and CR-structures on , Acta Math. 172 (1994), 1-49. | Zbl 0814.32002
[001] [BD1] J. Bland and T. Duchamp, Moduli for pointed convex domains, Invent. Math. 104 (1991), 61-112. | Zbl 0731.32010
[002] [BD2] J. Bland and T. Duchamp, Basepoint dependence of moduli for convex domains, in preparation (1993).
[003] [BdM] L. Boutet de Monvel, Intégration des équations de Cauchy-Riemann induites formelles, Séminaire Goulaouic-Lions-Schwartz 9 (1974/75), 1-13.
[004] [BE] D. M. Burns and C. L. Epstein, Embeddability for three dimensional CR-manifolds, J. Amer. Math. Soc. 3 (1990), 809-841. | Zbl 0736.32017
[005] [CL] J. H. Cheng and J. Lee, A local slice theorem for 3-dimensional CR-structures, preprint. | Zbl 0841.32004
[006] [FS] G. B. Folland and E. M. Stein, Estimates for the -complex and analysis on the Heisenberg group, Comm. Pure Appl. Math. 27 (1974), 429-522. | Zbl 0293.35012
[007] [G] J. Gray, Some global properties of contact structures, Ann. of Math. 69 (1959), 421-450. | Zbl 0092.39301
[008] [L1] L. Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France 109 (1981), 427-474.
[009] [L2] L. Lempert, On three dimensional Cauchy-Riemann manifolds, J. Amer. Math. Soc. 5 (1992), 923-969. | Zbl 0781.32014
[010] [O] H. Omori, Infinite Dimensional Lie Transformation Groups, Lecture Notes in Math. 427, Springer, Berlin, 1994. | Zbl 0328.58005
[011] [R] H. Rossi, Attaching analytic spaces to an analytic space along a pseudoconvex boundary, in: Proceedings of the Conference on Complex Manifolds, A. Aeppli et al. (ed.), Springer, Berlin, 1965, 242-256.
[012] [W] A. Weinstein, Lectures on Symplectic Manifolds, CBMS Regional Conf. Ser. in Math. 29, Amer. Math. Soc., Providence, 1977.