Attraction des disques analytiques et continuité Höldérienne d'applications holomorphes propres
Berteloot, François
Banach Center Publications, Tome 31 (1995), p. 91-98 / Harvested from The Polish Digital Mathematics Library
Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:262837
@article{bwmeta1.element.bwnjournal-article-bcpv31z1p91bwm,
     author = {Berteloot, Fran\c cois},
     title = {Attraction des disques analytiques et continuit\'e H\"old\'erienne d'applications holomorphes propres},
     journal = {Banach Center Publications},
     volume = {31},
     year = {1995},
     pages = {91-98},
     zbl = {0831.32012},
     language = {fra},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv31z1p91bwm}
}
Berteloot, François. Attraction des disques analytiques et continuité Höldérienne d'applications holomorphes propres. Banach Center Publications, Tome 31 (1995) pp. 91-98. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv31z1p91bwm/

[000] [1] F. Berteloot, Hölder continuity of proper holomorphic mappings, Studia Math. 100 (1991), 229-235. | Zbl 0746.32009

[001] [2] F. Berteloot, A remark on local continuous extension of holomorphic mappings, in: Contemp. Math. 137 (1992), 79-83. | Zbl 0781.32027

[002] [3] F. Berteloot et G. Cœuré, Domaines de C2, pseudoconvexes et de type fini, ayant un groupe non compact d’automorphismes, Ann. Inst. Fourier 41 (1) (1991), 77-86. | Zbl 0711.32016

[003] [4] K. Diederich and J. E. Fornaess, Proper holomorphic maps onto pseudoconvex domains with real analytic boundaries, Ann. of Math. 110 (1979), 575-592. | Zbl 0394.32012

[004] [5] F. Forstneric and J. P. Rosay, Localization of the Kobayashi metric and the boundary continuity of proper holomorphic mappings, Math. Ann. 279 (1987), 239-252. | Zbl 0644.32013

[005] [6] J. E. Fornaess and N. Sibony, Construction of p.s.h. functions on weakly pseudoconvex domains, Duke Math. J. 58 (1989), 633-655. | Zbl 0679.32017

[006] [7] G. M. Henkin, An analytic polyhedron is not biholomorphically equivalent to a strictly pseudoconvex domain, Soviet Math. Dokl. 14 (1973), 858-862. | Zbl 0288.32015

[007] [8] S. Pinchuk, Holomorphic aps in n and the Problem of Holomorphic Equivalence, Encyclopaedia of Math. Sci. 19, Springer, 1989.

[008] [9] S. Pinchuk, On proper holomorphic mappings of strictly pseudoconvex domains, Siberian Math. J. 15 (1974), 909-917.

[009] [10] R. M. Range, On the topological extension to the boundary of biholomorphic maps in n, Trans. Amer. Math. Soc. 216 (1976), 203-216. | Zbl 0313.32034

[010] [11] N. Sibony, A class of hyperbolic manifolds, in: Ann. of Math. Stud. 100, 1981, 357-372. | Zbl 0476.32033