@article{bwmeta1.element.bwnjournal-article-bcpv31z1p53bwm, author = {Azukawa, Kazuo}, title = {The ratio of invariant metrics on the annulus and theta functions}, journal = {Banach Center Publications}, volume = {31}, year = {1995}, pages = {53-60}, zbl = {0823.30029}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv31z1p53bwm} }
Azukawa, Kazuo. The ratio of invariant metrics on the annulus and theta functions. Banach Center Publications, Tome 31 (1995) pp. 53-60. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv31z1p53bwm/
[000] [1] K. Azukawa, Two intrinsic pseudo-metrics with pseudoconvex indicatrices and starlike circular domains J. Math. Soc. Japan 38 (1986), 627-647 | Zbl 0607.32015
[001] [2] K. Azukawa, The invariant pseudo-metric related to negative plurisubharmonic functions Kodai Math. J. 10 (1987), 83-92 | Zbl 0618.32020
[002] [3] E. Bedford and B. A. Taylor, Plurisubharmonic functions with logarithmic singularities Ann. Inst. Fourier (Grenoble) 38 (1988), 133-171 | Zbl 0626.32022
[003] [4] K. Chandrasekharan, Elliptic Functions Springer, New York, 1985.
[004] [5] C. Carathéodory, Über die Geometrie der analytischen Abbildungen, die durch analytische Funktionen von zwei Veränderlichen vermittelt werden Abh. Math. Sem. Univ. Hamburg 6 (1928), 96-145 | Zbl 54.0372.04
[005] [6] S. Dineen, The Schwarz Lemma Clarendon Press, Oxford, 1989.
[006] [7] J. E. Fornaess and B. Stensοness, Lectures on Counterexamples in Several Complex Variables Princeton Univ. Press, Princeton, 1987.
[007] [8] M. Jarnicki and P. Pflug, Invariant pseudodistances and pseudometrics--Completeness and product property Ann. Polon. Math. 55 (1991), 169-189 | Zbl 0756.32016
[008] [9] M. Klimek, Extremal plurisubharmonic functions and invariant pseudodistances Bull. Soc. Math. France 113 (1985), 231-240
[009] [10] M. Klimek, Infinitesimal pseudo-metrics and the Schwarz lemma Proc. Amer. Math. Soc. 105 (1989), 134-140
[010] [11] M. Klimek, Pluripotential Theory Clarendon Press, Oxford, 1991.
[011] [12] S. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings Marcel Dekker, New York, 1970.
[012] [13] S. Kobayashi, Intrinsic distances, measures and geometric function theory Bull. Amer. Math. Soc. 82 (1976), 357-416 | Zbl 0346.32031
[013] [14] L. Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule Bull. Soc. Math. France 109 (1981), 427-474
[014] [15] E. A. Poletskiĭ and B. V. Shabat, Invariant metrics in: Encyclopedia of Mathematical Sciences 9, G. M. Khenkin (ed.), 1989, 63-111
[015] [16] H. L. Royden, Remarks on the Kobayashi metric in: Lecture Notes in Math. 185, Springer, Berlin, 1971, 125-137
[016] [17] R. R. Simha, The Carathéodory metric of the annulus Proc. Amer. Math. Soc. 50 (1975), 162-166 | Zbl 0281.30010