An estimate from below for the Markov constant of a Cantor repeller
Volberg, Alexander
Banach Center Publications, Tome 31 (1995), p. 383-390 / Harvested from The Polish Digital Mathematics Library
Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:262809
@article{bwmeta1.element.bwnjournal-article-bcpv31z1p383bwm,
     author = {Volberg, Alexander},
     title = {An estimate from below for the Markov constant of a Cantor repeller},
     journal = {Banach Center Publications},
     volume = {31},
     year = {1995},
     pages = {383-390},
     zbl = {0853.30017},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv31z1p383bwm}
}
Volberg, Alexander. An estimate from below for the Markov constant of a Cantor repeller. Banach Center Publications, Tome 31 (1995) pp. 383-390. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv31z1p383bwm/

[000] [1] W. Pawłucki and W. Pleśniak, Extension of C functions from sets with polynomial cusps, Studia Math. 88 (1988), 279-287. | Zbl 0778.26010

[001] [2] W. Pawłucki and W. Pleśniak, Prolongement de fonctions C, C.R. Acad. Sci. Paris Ser. I 304 (1987), 167-168.

[002] [3] J. Siciak, On some extremal functions and their applications in the theory of analytic functions of several complex variables, Trans. Amer. Math. Soc. 105 (1962), 322-357. | Zbl 0111.08102

[003] [4] L. Białas and A. Volberg, Markov's property of the Cantor ternary set, Studia Math. 104 (1993), 259-268.

[004] [5] P. Jones and Th. Wolff, Hausdorff dimension of harmonic measure in the plane I, Acta Math. 161 (1988), 133-144.

[005] [6] A. Volberg, On the dimension of harmonic measure of Cantor repellers, Michigan Math. J. 40 (1993), 239-258. | Zbl 0797.30022

[006] [7] A. Zdunik, Parabolic orbifolds and the dimension of the maximal measure for rational maps, Invent. Math. 99 (1990), 627-649. | Zbl 0820.58038

[007] [8] R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lect. Notes in Math. 470 (1975). | Zbl 0308.28010

[008] [9] W. Phillipp and W. Stout, Almost sure invariant principles for partial sums of weakly dependent random variables, Mem. Amer. Math. Soc. 161 (1975).

[009] [10] I. A. Ibragimov and Yu. V. Linnik, Independent and stationary sequences of random variables, Wolters-Noordhoff, Groningen, 1971. | Zbl 0219.60027

[010] [11] A. Volberg, On the harmonic measure of self-similar sets on the plane, in: Harmonic Analysis and Discrete Potential Theory, M. Picardello (ed.), Plenum Press, 1991, 267-281.