Asymptotic distribution of poles and zeros of best rational approximants to xα on [0,1]
Saff, E. ; Stahl, H.
Banach Center Publications, Tome 31 (1995), p. 329-348 / Harvested from The Polish Digital Mathematics Library

Let rn*nn be the best rational approximant to f(x)=xα, 1 > α > 0, on [0,1] in the uniform norm. It is well known that all poles and zeros of rn* lie on the negative axis <0. In the present paper we investigate the asymptotic distribution of these poles and zeros as n → ∞. In addition we determine the asymptotic distribution of the extreme points of the error function en=f-rn* on [0,1], and survey related convergence results.

Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:262780
@article{bwmeta1.element.bwnjournal-article-bcpv31z1p329bwm,
     author = {Saff, E. and Stahl, H.},
     title = {Asymptotic distribution of poles and zeros of best rational approximants to $x^$\alpha$$ on [0,1]},
     journal = {Banach Center Publications},
     volume = {31},
     year = {1995},
     pages = {329-348},
     zbl = {0826.41018},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv31z1p329bwm}
}
Saff, E.; Stahl, H. Asymptotic distribution of poles and zeros of best rational approximants to $x^α$ on [0,1]. Banach Center Publications, Tome 31 (1995) pp. 329-348. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv31z1p329bwm/

[000] [Be1] S. Bernstein, Sur meilleure approximation de |x| par des polynômes de degrés donnés, Acta Math. 37 (1913), 1-57. | Zbl 44.0475.01

[001] [Be2] S. Bernstein, About the best approximation of |x|p by means of polynomials of very high degree, Bull. Acad. Sci. USRR, Cl. Math. Nat. Sci. 2 (1938), 169-190; also in: Collected Works, Vol. II, 262-272 (in Russian).

[002] [Bu1] A. P. Bulanov, Asymptotics for the least deviation of |x| from rational functions, Math. Sb. 76 (118) (1968), 288-303 (in Russian); English transl.: Math. USSR-Sb. 5 (1968), 275-290.

[003] [Bu2] A. P. Bulanov, The approximation of x1/3 by rational functions, Vesci Akad. Navuk BSSR Ser. Fiz.-Navuk 1968, no. 2, 47-56 (in Russian).

[004] [FrSz] G. Freud and J. Szabados, Rational Approximation to xα, Acta Math. Acad. Sci. Hungar. 18 (1967), 393-399. | Zbl 0172.34201

[005] [Ga] T. Ganelius, Rational approximation of xα on [0,1], Anal. Math. 5 (1979), 19-33. | Zbl 0425.41017

[006] [Go1] A. A. Gonchar, On the speed of rational approximation of continuous functions with characteristic singularities, Math. Sb. 73 (115) (1967), 630-638 (in Russian); English transl.: Math. USSR-Sb. 2 (1967). | Zbl 0175.06001

[007] [Go2] A. A. Gonchar, Rational approximation of the function xα, in: Constructive Theory of Functions (Proc. Internat. Conf., Varna 1970), Izdat. Bolgar. Akad. Nauk, Sofia, 1972, 51-53 (in Russian).

[008] [Go3] A. A. Gonchar, The rate of rational approximation and the property of single valuedness of an analytic function in a neighborhood of an isolated singular point, Mat. Sb. 94 (136) (1974), 265-282 (in Russian); English transl.: Math. USSR-Sb. 23 (1974).

[009] [Me] G. Meinardus, Approximation of Functions: Theory and Numerical Methods, Springer, New York 1967.

[010] [Ne] D. J. Newman, Rational approximation to |x|, Michigan Math. J. 11 (1964), 11-14.

[011] [Ri] T. J. Rivlin, An Introduction to the Approximation of Functions, Blaisdell, Waltham, Mass., 1969.

[012] [SaSt1] E. B. Saff and H. Stahl, Distribution of poles and zeros of best approximations for |x|α, in: Constructive Theory of Functions 91, G. K. Ivanov et al. (eds.), Publ. of the Bulgarian Acad., Sofia, 1992, 249-257.

[013] [SaSt2] E. B. Saff and H. Stahl, Sequences in the Walsh table for |x|α, J. Canad. Math. Soc., to appear.

[014] [St1] H. Stahl, Best uniform rational approximation of |x| on [-1,1], Mat. Sb. 183 (1992), 85-112 (in Russian); English transl.: Russian Acad. Sci. Sb. Math. 76 (1993), 461-487.

[015] [St2] H. Stahl, Uniform approximation of |x|, in: Methods of Approximation Theory in Complex Analysis and Mathematical Physics, A. A. Gonchar and E. B. Saff (eds.), Nauka, 1992, 110-130.

[016] [St3] H. Stahl, Best uniform rational approximation of xα on [0,1], Bull. Amer. Math. Soc. 28 (1993), 116-122.

[017] [St4] H. Stahl, Poles and zeros of best rational approximations of |x|, Constr. Approx. 10 (1994), 469-522. | Zbl 0815.41015

[018] [StTo] H. Stahl and V. Totik, General Orthogonal Polynomials, Encyclopedia of Math. Appl. 43, Cambridge University Press, Cambridge, 1992.

[019] [VC] R. S. Varga and A. J. Carpenter, Some numeral results on best uniform rational approximation of xα on [0,1], Numer. Algorithms 2 (1992), 171-185.

[020] [Vy1] N. S. Vyacheslavov, The approximation of |x| by rational functions, Mat. Zametki 16 (1974), 163-171 (in Russian). | Zbl 0307.41010

[021] [Vy2] N. S. Vyacheslavov, On the approximation of |x| by rational functions, Dokl. Akad. Nauk SSSR 220 (1975), 512-515; English transl.: Soviet Math. Dokl. 16 (1975), 100-104.

[022] [Vy3] N. S. Vyacheslavov, On the approximation of xα by rational functions, Izv. Akad. Nauk SSSR 44 (1980) (in Russian); English transl.: Math. USSR-Izv. 16 (1981), 83-101.