This paper provides sufficient conditions on a quasisymmetric automorphism γ of the unit circle which guarantee the existence of the smallest positive eigenvalue of γ. They are expressed by means of a regular quasiconformal Teichmüller self-mapping φ of the unit disc Δ. In particular, the norm of the generalized harmonic conjugation operator is determined by the maximal dilatation of φ. A characterization of all eigenvalues of a quasisymmetric automorphism γ in terms of the smallest positive eigenvalue of some other quasisymmetric automorphism σ is given.
@article{bwmeta1.element.bwnjournal-article-bcpv31z1p303bwm, author = {Partyka, Dariusz}, title = {The smallest positive eigenvalue of a quasisymmetric automorphism of the unit circle}, journal = {Banach Center Publications}, volume = {31}, year = {1995}, pages = {303-310}, zbl = {0833.30012}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv31z1p303bwm} }
Partyka, Dariusz. The smallest positive eigenvalue of a quasisymmetric automorphism of the unit circle. Banach Center Publications, Tome 31 (1995) pp. 303-310. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv31z1p303bwm/
[000] [A] L. V. Ahlfors, Lectures on Quasiconformal Mappings, D. Van Nostrand, Princeton, 1966.
[001] [BS] S. Bergman and M. Schiffer, Kernel functions and conformal mapping, Compositio Math. 8 (1951), 205-249. | Zbl 0043.08403
[002] [B1] B. Bojarski, Homeomorphic solution of Beltrami systems, Dokl. Akad. Nauk SSSR 102 (1955), 661-664 (in Russian).
[003] [B2] B. Bojarski, Generalized solutions of a system of differential equations of the first order and elliptic type with discontinuous coefficients, Mat. Sb. N.S. 43 (1957), 451-503 (in Russian).
[004] [G] J. B. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981. | Zbl 0469.30024
[005] [K] J. G. Krzyż, Quasicircles and harmonic measure, Ann. Acad. Sci. Fenn. Ser. A I Math. 12 (1987), 19-24. | Zbl 0563.30016
[006] [KP] J. G. Krzyż and D. Partyka, Generalized Neumann-Poincaré operator, chord-arc curves and Fredholm eigenvalues, Complex Variables, Theory Appl. 21 (1993), 253-263. | Zbl 0793.30031
[007] [Kü] R. Kühnau, Wann sind die Grunskyschen Koeffizientenbedingungen hinreichend für Q-quasikonforme Fortsetzbarkeit?, Comment. Math. Helv. 61 (1986), 290-307. | Zbl 0605.30023
[008] [L] O. Lehto, Univalent Functions and Teichmüller Spaces, Graduate Texts in Math. 109 Springer, New York, 1987. | Zbl 0606.30001
[009] [LV] O. Lehto and K. I. Virtanen, Quasiconformal Mappings in the Plane, 2nd ed., Grundlehren Math. Wiss. 126, Springer, New York, 1973. | Zbl 0267.30016
[010] [Ł] K] J. Ławrynowicz and J. G. Krzyż, Quasiconformal Mappings in the Plane: Parametrical Methods, Lecture Notes in Math. 978, Springer, Berlin, 1983.
[011] [P1] D. Partyka, Spectral values of a quasicircle, Complex Variables Theory Appl., to appear. | Zbl 0708.30022
[012] [P2] D. Partyka, Generalized harmonic conjugation operator, Proceedings of the Fourth Finnish-Polish Summer School in Complex Analysis at Jyväskylä, Ber. Univ. Jyväskylä Math. Inst. 55 (1993), 143-155.
[013] [P3] D. Partyka, Spectral values and eigenvalues of a quasicircle, preprint. | Zbl 0826.30014
[014] [S] M. Schiffer, The Fredholm eigenvalues of plane domains, Pacific J. Math. 7 (1957), 1187-1225. | Zbl 0138.30003
[015] [St1] K. Strebel, Zur Frage der Eindeutigkeit extremaler quasikonformer Abbildungen des Einheitskreises I, Comment. Math. Helv. 36 (1962), 306-323.
[016] [St2] K. Strebel, Zur Frage der Eindeutigkeit extremaler quasikonformer Abbildungen des Einheitskreises II, ibid. 39 (1964), 77-89.