Deformations of a strongly pseudo-convex domain of complex dimension ≥ 4
Miyajima, Kimio
Banach Center Publications, Tome 31 (1995), p. 275-280 / Harvested from The Polish Digital Mathematics Library
Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:262818
@article{bwmeta1.element.bwnjournal-article-bcpv31z1p275bwm,
     author = {Miyajima, Kimio},
     title = {Deformations of a strongly pseudo-convex domain of complex dimension $\geq$ 4},
     journal = {Banach Center Publications},
     volume = {31},
     year = {1995},
     pages = {275-280},
     zbl = {0853.32025},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv31z1p275bwm}
}
Miyajima, Kimio. Deformations of a strongly pseudo-convex domain of complex dimension ≥ 4. Banach Center Publications, Tome 31 (1995) pp. 275-280. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv31z1p275bwm/

[000] [Ak1] T. Akahori, The new Neumann operator associated with deformations of strongly pseudo-convex domains and its applications to deformation theory, Invent. Math. 68 (1982), 317-352. | Zbl 0575.32021

[001] [Ak2] T. Akahori, A criterion for the Neumann type problem over a differential complex on a strongly pseudo-convex domain, Math. Ann. 264 (1983), 525-535. | Zbl 0563.32009

[002] [B-K] J. Bingener and S. Kosarew, Lokale Modulräume in der analytischen Geometrie, Aspects of Math., D2, D3, Vieweg-Verlag, Braunschweig, 1987.

[003] [B-S-W] D. Burns, S. Schnider and R. O. Wells, Deformations of strictly pseudo-convex domains, Invent. Math. 46 (1978), 237-253.

[004] [E] H. von Essen, Nonflat deformations of modules and isolated singularities, Math. Ann. 287 (1990), 413-427. | Zbl 0707.14002

[005] [Fl] H. Flenner, Ein Kriterium für die Offenheit der Versalität, Math. Z. 178 (1981), 449-473. | Zbl 0453.14002

[006] [G] A. Galligo, Théorème de division et stabilité en géométrie analytique locale, Ann. Inst. Fourier (Grenoble) 29 (1979), 107-184. | Zbl 0412.32011

[007] [M1] K. Miyajima, Deformations of a complex manifold neear a strongly pseudo-convex real hypersurface and a realization of Kuranishi family of strongly pseudo-convex CR structures, Math. Z. 205 (1990), 593-602. | Zbl 0693.32011

[008] [M2] K. Miyajima, Kuranishi family of strongly pseudo-convex domains, Osaka Math. J., to appear.

[009] [M3] K. Miyajima, in preparation.

[010] [N] S. Nakano, Vanishing theeorems for weakly 1-complete manifolds, II, Publ. R.I.M.S. Kyoto Univ. 10 (1974), 101-110. | Zbl 0298.32019

[011] [O] T. Ohsawa, A reduction theorem for cohomology groups of very strongly q-convex Kähler manifolds, Invent. Math. 63 (1981), 335-354. | Zbl 0457.32007

[012] [Sch] M. Schlessinger, Functors of Artin rings, Trans. Amer. Math. Soc. 130 (1968), 208-222. | Zbl 0167.49503

[013] [Si] Y.-T. Siu, The 1-convex generalization of Grauert's direct image theorem, Math. Ann. 190 (1971), 203-214. | Zbl 0197.36101

[014] [Sp1] K. Spallek, Differenzierbare und holomorphe Funktionen auf analytischen Mengen, Math. Ann. 161 (1965), 143-162.

[015] [Sp2] K. Spallek, Zum Satz von Osgood und Hartogs für analytische Moduln. II, Math. Ann. 182 (1969), 77-94. | Zbl 0172.10501

[016] [Ti] C. Tian, Smoothness of the universal deformation space of compact Calabi-Yau manifolds and its Petersson-Weil metric, in: Mathematical Aspects of String Theory, S. T. Yau (ed.), World Scientific, 1987, 629-646.

[017] [To] A. N. Todorov, The Weil-Petersson geometry of the moduli space of SU(≥ 3) (Calabi-Yau) manifolds I, Comm. Math. Phys. 126 (1989), 325-346. | Zbl 0688.53030