Lebesgue measure and mappings of the Sobolev class W1,n
Martio, O.
Banach Center Publications, Tome 31 (1995), p. 255-262 / Harvested from The Polish Digital Mathematics Library

We present a survey of the Lusin condition (N) for W1,n-Sobolev mappings f:Gn defined in a domain G of n. Applications to the boundary behavior of conformal mappings are discussed.

Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:262873
@article{bwmeta1.element.bwnjournal-article-bcpv31z1p255bwm,
     author = {Martio, O.},
     title = {Lebesgue measure and mappings of the Sobolev class $W^{1,n}$
            },
     journal = {Banach Center Publications},
     volume = {31},
     year = {1995},
     pages = {255-262},
     zbl = {0876.30026},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv31z1p255bwm}
}
Martio, O. Lebesgue measure and mappings of the Sobolev class $W^{1,n}$
            . Banach Center Publications, Tome 31 (1995) pp. 255-262. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv31z1p255bwm/

[000] [BI] B. Bojarski and T. Iwaniec, Analytical foundations of the theory of quasiconformal mappings in n, Ann. Acad. Sci. Fenn. Ser. A I Math. 8 (1983), 257-324. | Zbl 0548.30016

[001] [C] L. Cesari, Sulle transformazioni continue, Ann. Mat. Pura Appl. 21 (1941), 157-188. | Zbl 0028.21004

[002] [G] F. W. Gehring, Rings and quasiconformal mappings in space, Proc. Nat. Acad. Sci. U.S.A. 47 (1961), 98-105. | Zbl 0096.27602

[003] [H] P. Hajłasz, Change of variables formula under minimal assumptions, Colloq. Math. 114 (1993), 93-101. | Zbl 0840.26009

[004] [HKM] J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Math. Monographs, Clarendon Press, Oxford 1993. | Zbl 0780.31001

[005] [JM] P. Jones and N. G. Makarov, Density properties of harmonic measure, preprint. | Zbl 0842.31001

[006] [M] J. Malý, Hölder type quasicontinuity, to appear. | Zbl 0803.46037

[007] [MM] J. Malý and O. Martio, Lusin’s condition (N) and mappings of the class W1,n, to appear. | Zbl 0812.30007

[008] [MZ] O. Martio and W. P. Ziemer, Lusin's condition (N) and mappings with non-negative Jacobians, Michigan Math. J., to appear.

[009] [Mu] S. Müller, Higher integrability of determinants and weak convergence in L1, J. Reine Angew. Math. 412 (1990), 20-34.

[010] [NP] R. Näkki and B. Palka, Boundary angles, cusps and conformal mappings, Complex Variables Theory Appl. 5 (1986), 165-180. | Zbl 0593.30011

[011] [P] S. P. Ponomarev, Examples of homeomorphisms in the class ACTLp which do not satisfy the absolute continuity condition of Banach, Dokl. Akad. Nauk SSSR 201 (1971), 1053-1054 (in Russian).

[012] [RR] T. Radó and P. V. Reichelderfer, Continuous Transformations in Analysis, Springer 1955. | Zbl 0067.03506

[013] [Rei] H. M. Reimann, On the absolute continuity of a surface representation, Comment. Math. Helv. 46 (1971), 44-47. | Zbl 0212.40503

[014] [Res1] Yu. G. Reshetnyak, The condition (N) for Wn,loc1 space mappings, Sibirsk. Mat. Zh. 28 (1987), 149-153 (in Russian).

[015] [Res2] Yu. G. Reshetnyak, Space Mappings with Bounded Distortion, Transl. Math. Monographs 73, Amer. Math. Soc., 1989.

[016] [S] S. Saks, Theory of the Integral, Warsaw, 1937. | Zbl 0017.30004

[017] [V] J. Väisälä, Quasiconformal maps and positive boundary measure, Analysis 9 (1989), 205-216. | Zbl 0674.30018