We present a survey of the Lusin condition (N) for -Sobolev mappings defined in a domain G of . Applications to the boundary behavior of conformal mappings are discussed.
@article{bwmeta1.element.bwnjournal-article-bcpv31z1p255bwm, author = {Martio, O.}, title = {Lebesgue measure and mappings of the Sobolev class $W^{1,n}$ }, journal = {Banach Center Publications}, volume = {31}, year = {1995}, pages = {255-262}, zbl = {0876.30026}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv31z1p255bwm} }
Martio, O. Lebesgue measure and mappings of the Sobolev class $W^{1,n}$ . Banach Center Publications, Tome 31 (1995) pp. 255-262. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv31z1p255bwm/
[000] [BI] B. Bojarski and T. Iwaniec, Analytical foundations of the theory of quasiconformal mappings in , Ann. Acad. Sci. Fenn. Ser. A I Math. 8 (1983), 257-324. | Zbl 0548.30016
[001] [C] L. Cesari, Sulle transformazioni continue, Ann. Mat. Pura Appl. 21 (1941), 157-188. | Zbl 0028.21004
[002] [G] F. W. Gehring, Rings and quasiconformal mappings in space, Proc. Nat. Acad. Sci. U.S.A. 47 (1961), 98-105. | Zbl 0096.27602
[003] [H] P. Hajłasz, Change of variables formula under minimal assumptions, Colloq. Math. 114 (1993), 93-101. | Zbl 0840.26009
[004] [HKM] J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Math. Monographs, Clarendon Press, Oxford 1993. | Zbl 0780.31001
[005] [JM] P. Jones and N. G. Makarov, Density properties of harmonic measure, preprint. | Zbl 0842.31001
[006] [M] J. Malý, Hölder type quasicontinuity, to appear. | Zbl 0803.46037
[007] [MM] J. Malý and O. Martio, Lusin’s condition (N) and mappings of the class , to appear. | Zbl 0812.30007
[008] [MZ] O. Martio and W. P. Ziemer, Lusin's condition (N) and mappings with non-negative Jacobians, Michigan Math. J., to appear.
[009] [Mu] S. Müller, Higher integrability of determinants and weak convergence in , J. Reine Angew. Math. 412 (1990), 20-34.
[010] [NP] R. Näkki and B. Palka, Boundary angles, cusps and conformal mappings, Complex Variables Theory Appl. 5 (1986), 165-180. | Zbl 0593.30011
[011] [P] S. P. Ponomarev, Examples of homeomorphisms in the class which do not satisfy the absolute continuity condition of Banach, Dokl. Akad. Nauk SSSR 201 (1971), 1053-1054 (in Russian).
[012] [RR] T. Radó and P. V. Reichelderfer, Continuous Transformations in Analysis, Springer 1955. | Zbl 0067.03506
[013] [Rei] H. M. Reimann, On the absolute continuity of a surface representation, Comment. Math. Helv. 46 (1971), 44-47. | Zbl 0212.40503
[014] [Res1] Yu. G. Reshetnyak, The condition (N) for space mappings, Sibirsk. Mat. Zh. 28 (1987), 149-153 (in Russian).
[015] [Res2] Yu. G. Reshetnyak, Space Mappings with Bounded Distortion, Transl. Math. Monographs 73, Amer. Math. Soc., 1989.
[016] [S] S. Saks, Theory of the Integral, Warsaw, 1937. | Zbl 0017.30004
[017] [V] J. Väisälä, Quasiconformal maps and positive boundary measure, Analysis 9 (1989), 205-216. | Zbl 0674.30018