Phénomène de Hartogs-Bochner dans les variétés CR
Laurent-Thiebaut, Christine
Banach Center Publications, Tome 31 (1995), p. 233-247 / Harvested from The Polish Digital Mathematics Library
Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:262570
@article{bwmeta1.element.bwnjournal-article-bcpv31z1p233bwm,
     author = {Laurent-Thiebaut, Christine},
     title = {Ph\'enom\`ene de Hartogs-Bochner dans les vari\'et\'es CR},
     journal = {Banach Center Publications},
     volume = {31},
     year = {1995},
     pages = {233-247},
     zbl = {0841.32008},
     language = {fra},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv31z1p233bwm}
}
Laurent-Thiebaut, Christine. Phénomène de Hartogs-Bochner dans les variétés CR. Banach Center Publications, Tome 31 (1995) pp. 233-247. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv31z1p233bwm/

[000] [Ai/He] R. A. Airapetjan and G. M. Henkin, Integral representations of differential forms on Cauchy-Riemann manifolds and the theory of CR-functions, Russian Math. Surveys 39 (1984), 41-118.

[001] [An/G] A. Andreotti et H. Grauert, Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France 90 (1962), 193-259. | Zbl 0106.05501

[002] [An/Hi] A. Andreotti and C. D. Hill, E. E. Levi convexity and the Hans Lewy problem. Part I: Reduction to vanishing theorems, Ann. Scuola Norm. Sup. Pisa 26 (1972), 325-363. | Zbl 0256.32007

[003] [Ba] M. Y. Barkatou, Estimation höldérienne d'un noyau local de type Martinelli-Bochner sur les hypersurfaces 1-convexes-concaves, Applications, Math. Z., à paraître.

[004] [Bo] S. Bochner, Analytic and meromorphic continuation by means of Green's formula, Ann. of Math. 44 (1943), 652-673. | Zbl 0060.24206

[005] [Či] E. M. Čirka, Analytic representation of CR functions, Math. USSR-Sb. 27 (1975), 526-553. | Zbl 0371.32004

[006] [Eh] L. Ehrenpreis, A new proof and an extension of Hartogs theorem, Bull. Amer. Math. Soc. 67 (1961), 507-509. | Zbl 0099.07801

[007] [Fi/Le] B. Fischer and J. Leiterer, A local Martinelli-Bochner formula on hypersurfaces, Math. Z. 214 (1993), 659-681. | Zbl 0791.32006

[008] [Fi/Li] W. Fischer und I. Lieb, Lokale Kerne und beschränkte Lösungen für den ∂̅-Operator auf q-konvexen Gebieten, Math. Ann. 208 (1974), 249-265. | Zbl 0277.35045

[009] [Ha/La] R. Harvey and H. B. Lawson, Boundaries of complex analytic varieties I, Ann. of Math. 102 (1975), 233-290.

[010] [He 1] G. M. Henkin, Solution des équations de Cauchy-Riemann tangentielles sur des variétés de Cauchy-Riemann q-convexes, C. R. Acad. Sci. Paris Sér. I Math.292 (1981), 27-30. | Zbl 0472.32014

[011] [He 2] G. M. Henkin, The Hartogs-Bochner effect on CR manifolds, Soviet Math. Dokl. 29 (1984), 78-82. | Zbl 0601.32021

[012] [He 3] G. M. Henkin, The method of integral representations in complex analysis, in: Sovremennye problemy matematiki, Fundamental'nye napravleniya 7, Moscow, VINITI, 1985, 23-124 (in Russian); English transl.: Encyclopedia of Math. Sci. 7, Several Complex Variables I, Springer, 1990, 19-116.

[013] [He/Le] G. M. Henkin and J. Leiterer, Andreotti-Grauert Theory by Integral Formulas, Birkhäuser, 1988. | Zbl 0654.32001

[014] [Ky] A. M. Kytmanov, Holomorphic extension of CR-functions with singularities on a hypersurface, Math. USSR-Izv. 37 (1991), 681-691. | Zbl 0738.32006

[015] [L-T] C. Laurent-Thiebaut, Sur l'extension des fonctions CR dans une variété de Stein, Ann. Mat. Pura Appl. 150 (1988), 141-152. | Zbl 0646.32010

[016] [L-T 1] C. Laurent-Thiebaut, Résolution du ̅b à support compact et phénomène de Hartogs-Bochner dans les variétés CR, in: Proc. Sympos. Pure Math. 52 (1991), 239-249.

[017] [L-T 2] C. Laurent-Thiebaut, Phénomène de Hartogs-Bochner relatif dans une hypersurface réelle 2-concave d'une variété analytique complexe, Math. Z. 212 (1993), 511-525.

[018] [L-T/L] C. Laurent-Thiebaut and J. Leiterer, On the Hartogs-Bochner extension phenomenon for differential forms, Math. Ann. 284 (1989), 103-119. | Zbl 0675.32015

[019] [Lu] G. Lupacciolu, A theorem on holomorphic extension of CR functions, Pacific J. Math. 124 (1986), 177-191. | Zbl 0597.32014

[020] [Lu 1] G. Lupacciolu, Some global results on extension of CR objects in complex manifolds, Trans. Amer. Math. Soc. 321 (1990), 761-774. | Zbl 0713.32006

[021] [Lu 2] G. Lupacciolu, Characterization of removable sets in strongly pseudo-convex boundaries, à paraître. | Zbl 0823.32004

[022] [Lu/To] G. Lupacciolu et G. Tomassini, Un teorema di estensione per le CR-funzioni, Ann. Mat. Pura Appl. 137 (1984), 257-263.

[023] [Ma 1] E. Martinelli, Sopra una dimonstrazione di R. Fueter per un teorema di Hartogs, Comment. Math. Helv. 15 (1943), 340-349.

[024] [Ma 2] E. Martinelli, Sulla determinazione di una funzione analitica più variabili complesse in un campo, assegnatone la traccia sulla frontiera, Ann. Mat. Pura Appl. 55 (1961), 192-202. | Zbl 0104.30203

[025] [N] I. Naruki, Localization principle for differential complexes and its applications, Publ. Res. Inst. Math. Sci. Kyoto Univ. 8 (1972), 43-110. | Zbl 0246.35072

[026] [St] E. L. Stout, Removable singularities for the boundary values of holomorphic functions, in: Math. Notes 38, Princeton University Press, 1993, 600-629. | Zbl 0772.32011