The problem of estimating the radius of starlikeness of various classes of close-to-convex functions has attracted a certain number of mathematicians involved in geometric function theory ([7], volume 2, chapter 13). Lewandowski [11] has shown that normalized close-to-convex functions are starlike in the disc . Krzyż [10] gave an example of a function , non-starlike in the unit disc , and belonging to the class H = f | f’() lies in the right half-plane. More generally let H* = f | f’() lies in some half-plane not containing 0. To the best of our knowledge, the radii of starlikeness of both H and H* are still unknown, in spite of the fact that corresponding extremal functions can be described in a relatively simple way (by using, for example, Ruscheweyh’s duality theory [15]). This paper is a survey of recent results concerning the radius of starlikeness of K = f ∈ H | |f’(z)-1| < 1, z ∈ .
@article{bwmeta1.element.bwnjournal-article-bcpv31z1p187bwm, author = {Fournier, Richard}, title = {On a radius problem concerning a class of close-to-convex functions}, journal = {Banach Center Publications}, volume = {31}, year = {1995}, pages = {187-195}, zbl = {1107.30303}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv31z1p187bwm} }
Fournier, Richard. On a radius problem concerning a class of close-to-convex functions. Banach Center Publications, Tome 31 (1995) pp. 187-195. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv31z1p187bwm/
[000] [1] R. P. Boas, Entire Functions, Academic Press, New York, 1954. | Zbl 0058.30201
[001] [2] P. C. Cochrane and T. H. MacGregor, Fréchet differentiable functionals and support points for families of analytic functions, Trans. Amer. Math. Soc. 236 (1978), 75-92. | Zbl 0377.30010
[002] [3] K. de Leeuw and W. Rudin, Extreme points and extremum problems in , Pacific J. Math. 8 (1958), 467-485. | Zbl 0084.27503
[003] [4] P. L. Duren, Univalent Functions, Springer, New York, 1983.
[004] [5] R. Fournier, On integrals of bounded analytic functions in the unit disc, Complex Variables 11 (1989), 125-133. | Zbl 0639.30016
[005] [6] R. Fournier, The range of a continuous linear functional over a class of functions defined by subordination, Glasgow Math. J. 32 (1990), 381-387. | Zbl 0715.30010
[006] [7] A. W. Goodman, Univalent Functions, Mariner Publishing Company, Tampa, 1983.
[007] [8] D. J. Hallenbeck and T. H. MacGregor, Support points of families of analytic functions defined by subordination, Trans. Amer. Math. Soc. 278 (1983), 523-546. | Zbl 0521.30018
[008] [9] D. J. Hallenbeck and T. H. MacGregor, Linear Problems and Convexity Techniques in Geometric Function Theory, Pitman, Boston, 1984. | Zbl 0581.30001
[009] [10] J. Krzyż, A counterexample concerning univalent functions, Folia Soc. Scient. Lubliniensis 2 (1962), 57-58.
[010] [11] Z. Lewandowski, Sur l'identité de certaines classes de fonctions univalentes, Ann. Univ. M. Curie-Skłodowska 14 (1960), 19-46. | Zbl 0108.07502
[011] [12] T. H. MacGregor, A class of univalent functions, Proc. Amer. Math. Soc. 15 (1964), 311-317. | Zbl 0137.05205
[012] [13] R. M. McLeod, The Generalized Riemann Integral, Mathematical Association of America, 1980. | Zbl 0486.26005
[013] [14] P. T. Mocanu, Some starlikeness conditions for analytic functions, Rev. Roumaine Math. Pures Appl. 33 (1988), 117-124. | Zbl 0652.30004
[014] [15] St. Ruscheweyh, Convolutions in Geometric Function Theory, Les Presses de l'Université de Montréal, Montréal, 1982.
[015] [16] St. Ruscheweyh, Duality for Hadamard products with applications to extremal problems for functions regular in the unit disc, Trans. Amer. Math. Soc. 210 (1975), 63-74. | Zbl 0311.30011
[016] [17] O. Toeplitz, Die linearen volkommenen Räume der Funktionentheorie, Comment. Math. Helv. 23 (1949), 222-242. | Zbl 0035.07301
[017] [18] V. Singh, Univalent functions with bounded derivative in the unit disc, Indian J. Pure Appl. Math. 5 (1974), 733-754. | Zbl 0346.30011