@article{bwmeta1.element.bwnjournal-article-bcpv31z1p135bwm, author = {Cegrell, Urban}, title = {The symmetric pluricomplex Green function}, journal = {Banach Center Publications}, volume = {31}, year = {1995}, pages = {135-141}, zbl = {0831.31008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv31z1p135bwm} }
Cegrell, Urban. The symmetric pluricomplex Green function. Banach Center Publications, Tome 31 (1995) pp. 135-141. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv31z1p135bwm/
[000] [1] K. Azukawa, The invariant pseudometric related to negative plurisubharmonic function, Kodai Math. J. 10 (1987), 83-92. | Zbl 0618.32020
[001] [2] E. Bedford and J. P. Demailly, Two counterexamples concerning the pluri-complex Green function in , Indiana Univ. Math. J. 37 (1988), 865-867. | Zbl 0681.32014
[002] [3] U. Cegrell, Capacities in Complex Analysis. Aspects of Mathematics, 14, Vieweg, 1988.
[003] [4] J. P. Demailly, Mesures de Monge-Ampère et mesures pluri-sousharmoniques, Math. Z. 194 (1987), 519-564. | Zbl 0595.32006
[004] [5] J. P. Demailly, Mesures de Monge-Ampère et caractérisation géométrique des variétés algébriques affines, Mém. Soc. Math. France 19 (1985), 1-125. | Zbl 0579.32012
[005] [6] M. Jarnicki and P. Pflug, Invariant Distances and Metrics in Complex Analysis, Walter de Gruyter & Co., 1993.
[006] [7] M. Klimek, Extremal plurisubharmonic functions and invariant pseudodistances, Bull. Soc. Math. France 113 (1985), 231-240. | Zbl 0584.32037
[007] [8] M. Klimek, Infinitesimal pseudometrics and the Schwarz lemma, Proc. Amer. Math. Soc. 105 (1989), 134-140.
[008] [9] M. Klimek, Pluripotential Theory, Oxford Science Publications, 1991.
[009] [10] S. Kołodziej, The logarithmic capacity in , Ann. Polon. Math. 48 (1988), 253-267. | Zbl 0664.32014