On discrepancy theorems with applications to approximation theory
Blatt, Hans-Peter
Banach Center Publications, Tome 31 (1995), p. 115-123 / Harvested from The Polish Digital Mathematics Library

We give an overview on discrepancy theorems based on bounds of the logarithmic potential of signed measures. The results generalize well-known results of P. Erdős and P. Turán on the distribution of zeros of polynomials. Besides of new estimates for the zeros of orthogonal polynomials, we give further applications to approximation theory concerning the distribution of Fekete points, extreme points and zeros of polynomials of best uniform approximation.

Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:262757
@article{bwmeta1.element.bwnjournal-article-bcpv31z1p115bwm,
     author = {Blatt, Hans-Peter},
     title = {On discrepancy theorems with applications to approximation theory},
     journal = {Banach Center Publications},
     volume = {31},
     year = {1995},
     pages = {115-123},
     zbl = {0831.30002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv31z1p115bwm}
}
Blatt, Hans-Peter. On discrepancy theorems with applications to approximation theory. Banach Center Publications, Tome 31 (1995) pp. 115-123. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv31z1p115bwm/

[000] [1] H.-P. Blatt, E. B. Saff and V. Totik, The distribution of extreme points in best complex polynomial approximation, Constr. Approx. 5 (1989), 357-370. | Zbl 0705.41030

[001] [2] H.-P. Blatt and R. Grothmann, Erdős-Turán theorems on a system of Jordan curves and arcs, ibid. 7 (1991), 19-47. | Zbl 0764.30003

[002] [3] H.-P. Blatt, On the distribution of simple zeros of polynomials, Approx. Theory 69 (1992), 250-268. | Zbl 0757.41011

[003] [4] H.-P. Blatt, Verteilung der Nullstellen von Polynomen auf Jordanbögen, in: P. Ganzinger (ed.), Informatik, Festschrift zum 60. Geburstag von G. Hotz, Teubner, Stuttgart, 1992.

[004] [5] H.-P. Blatt and H. N. Mhaskar, A general discrepancy theorem, Ark. Mat., to appear. | Zbl 0797.30032

[005] [6] P. Erdős and P. Turán, On the uniformly dense distribution of certain sequences of points, Ann. Math. 41 (1940), 162-173. | Zbl 66.0347.01

[006] [7] P. Erdős and P. Turán, On the uniformly dense distribution of certain sequences of points, ibid. 51 (1950), 105-119.

[007] [8] T. Ganelius, Sequences of analytic functions and their zeros, Ark. Mat. 3 (1953), 1-50.

[008] [9] R. Grothmann, Interpolation points and zeros of polynomials in approximation theory, Habilitationsschrift, Kath. Universität Eichstätt, 1993.

[009] [10] M. I. Kadec, On the distribution of points of maximum deviation in the approximation of continuous functions by polynomials, Amer. Math. Soc. Transl. (2)26 (1963), 231-234.

[010] [11] W. Kleiner, Sur l'approximation de la représentation conforme par la méthode des points extrémaux de M. Leja, Ann. Polon. Math. 14 (1964), 131-140. | Zbl 0128.07004

[011] [12] N. S. Landkof, Foundations of Modern Potential Theory, Springer, New York, 1972.

[012] [13] H. N. Mhaskar, Some discrepancy theorems, in: Approximation Theory, Tampa, E. B. Saff (ed.), Lecture Notes in Math. 1287, Springer, New York, 117-131.

[013] [14] M. Mignotte, Remarque sur une question relative à des fonctions conjuguées, C. R. Acad. Sci. Paris, to appear. | Zbl 0773.31002

[014] [15] Ch. Pommerenke, Über die Verteilung der Fekete-Punkte, Math. Ann. 168 (1967), 111-127. | Zbl 0145.31701

[015] [16] Ch. Pommerenke, Über die Verteilung der Fekete-Punkte II, ibid. 179 (1969), 212-218.

[016] [17] P. Sjögren, Estimates of mass distributions from their potentials and energies, Ark. Mat. 10 (1972), 59-77. | Zbl 0232.31009

[017] [18] V. Totik, Distribution of simple zeros of polynomials, Acta Math. 170 (1993), 1-28. | Zbl 0888.41003

[018] [19] M. Tsuji, Potential Theory in Modern Function Theory, Chelsea, New York, 1950. | Zbl 0087.28401

[019] [20] J. L. Walsh, Interpolation and Approximation by Rational Functions in the Complex Domain, Amer. Math. Soc. Colloq. Publ. 20, 5th ed., Providence, 1969.

[020] [21] H. Widom, Extremal polynomials associated with a system of curves in the complex plane, Adv. in Math. 3 (1969), 127-232. | Zbl 0183.07503