On the Gelfand-Hille theorems
Zemánek, Jaroslav
Banach Center Publications, Tome 29 (1994), p. 369-385 / Harvested from The Polish Digital Mathematics Library
Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:262822
@article{bwmeta1.element.bwnjournal-article-bcpv30z1p369bwm,
     author = {Zem\'anek, Jaroslav},
     title = {On the Gelfand-Hille theorems},
     journal = {Banach Center Publications},
     volume = {29},
     year = {1994},
     pages = {369-385},
     zbl = {0822.47005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv30z1p369bwm}
}
Zemánek, Jaroslav. On the Gelfand-Hille theorems. Banach Center Publications, Tome 29 (1994) pp. 369-385. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv30z1p369bwm/

[000] N. I. Akhiezer [1951], The work of academician S. N. Bernšteĭn on the constructive theory of functions (on the occasion of his seventieth birthday), Uspekhi Mat. Nauk 6, no. 1, 3-67 (in Russian).

[001] G. R. Allan [1989], Power-bounded elements in a Banach algebra and a theorem of Gelfand, in: Conference on Automatic Continuity and Banach Algebras (Canberra, January 1989), R. J. Loy (ed.), Proc. Centre Math. Anal. Austral. Nat. Univ. 21, 1-12.

[002] G. R. Allan and T. J. Ransford [1989], Power-dominated elements in a Banach algebra, Studia Math. 94, 63-79. | Zbl 0705.46021

[003] N. U. Arakelyan and V. A. Martirosyan [1991], Power Series: Analytic Extension and Localization of Singularities, University of Erevan, Erevan (in Russian). | Zbl 0626.30002

[004] W. Arendt [1983], Spectral properties of Lamperti operators, Indiana Univ. Math. J. 32, 199-215. | Zbl 0488.47016

[005] W. Arendt and C. J. K. Batty [1988], Tauberian theorems and stability of one-parameter semigroups, Trans. Amer. Math. Soc. 306, 837-852. | Zbl 0652.47022

[006] A. Atzmon [1980], Operators which are annihilated by analytic functions and invariant subspaces, Acta Math. 144, 27-63. | Zbl 0449.47007

[007] A. Atzmon [1983], Operators with resolvent of bounded characteristic, Integral Equations Operator Theory 6, 779-803. | Zbl 0545.47005

[008] A. Atzmon [1984], On the existence of hyperinvariant subspaces, J. Operator Theory 11, 3-40. | Zbl 0583.47009

[009] A. Atzmon [1993], Unicellular and non-unicellular dissipative operators, Acta Sci. Math. (Szeged) 57, 45-54. | Zbl 0814.47046

[010] A. Atzmon [in preparation], On the asymptotic growth of the sequence Tn+1-Tnn=1 for some operators T with σ(T) = 1.

[011] B. Aupetit [1991], A Primer on Spectral Theory, Springer, New York.

[012] B. Aupetit and D. Drissi [1994], Some spectral inequalities involving generalized scalar operators, Studia Math. 109, 51-66. | Zbl 0829.47002

[013] B. Aupetit and J. Zemánek [1981], Local behaviour of the spectral radius in Banach algebras, J. London Math. Soc. 23, 171-178. | Zbl 0432.46045

[014] B. Aupetit and J. Zemánek [1983], Local behavior of the spectrum near algebraic elements, Linear Algebra Appl. 52/53, 39-44. | Zbl 0518.46035

[015] B. Aupetit and J. Zemánek [1990], A characterization of normal matrices by their exponentials, ibid. 132, 119-121; 180 (1993), 1-2. | Zbl 0701.15021

[016] B. A. Barnes [1989], Operators which satisfy polynomial growth conditions, Pacific J. Math. 138, 209-219. | Zbl 0693.47001

[017] H. Bateman, A. Erdélyi et al. [1953], Higher Transcendental Functions II, McGraw-Hill, New York. | Zbl 0143.29202

[018] C. J. K. Batty [1994a], Some Tauberian theorems related to operator theory, this volume, 21-34. | Zbl 0810.40005

[019] C. J. K. Batty [1994b], Asymptotic behaviour of semigroups of operators, this volume, 35-52. | Zbl 0818.47034

[020] B. Beauzamy [1987], Orbites tendant vers l'infini, C. R. Acad. Sci. Paris Sér. I Math. 305, 123-126. | Zbl 0615.47003

[021] B. Beauzamy [1988], Introduction to Operator Theory and Invariant Subspaces, North-Holland, Amsterdam. | Zbl 0663.47002

[022] M. Berkani [1983], Inégalités et Propriétés Spectrales dans les Algèbres de Banach, Thèse, Université de Bordeaux I, Bordeaux.

[023] A. Bernard [1971], Algèbres quotients d'algèbres uniformes, C. R. Acad. Sci. Paris Sér. A-B 272, A1101-A1104. | Zbl 0222.46034

[024] S. J. Bernau and C. B. Huijsmans [1990], On the positivity of the unit element in a normed lattice ordered algebra, Studia Math. 97, 143-149. | Zbl 0782.47031

[025] S. Bernstein [1923], Sur une propriété des fonctions entières, C. R. Acad. Sci. Paris 176, 1603-1605. | Zbl 49.0215.02

[026] A. Beurling [1938], Sur les intégrales de Fourier absolument convergentes et leur application à une transformation fonctionnelle, in: Ninth Scandinavian Math. Congress, Helsingfors, 345-366. Also in: Collected Works of Arne Beurling, Vol. 2, Harmonic Analysis, L. Carleson, P. Malliavin, J. Neuberger, and J. Wermer (eds.), Birkhäuser, Boston, 1989, 39-60.

[027] L. Bieberbach [1927], Lehrbuch der Funktionentheorie II, Teubner, Berlin. | Zbl 53.0277.08

[028] L. Bieberbach [1955], Analytische Fortsetzung, Springer, Berlin. | Zbl 0064.06902

[029] R. P. Boas, Jr. [1954], Entire Functions, Academic Press, New York. | Zbl 66.0355.01

[030] R. P. Boas, Jr. [1969], Inequalities for the derivatives of polynomials, Math. Mag. 42, 165-174. F. F. Bonsall and M. J. Crabb [1970], The spectral radius of a Hermitian element of a Banach algebra, Bull. London Math. Soc. 2, 178-180.

[031] F. F. Bonsall and J. Duncan [1971], Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras, Cambridge University Press, Cambridge. | Zbl 0207.44802

[032] F. F. Bonsall and J. Duncan [1973], Complete Normed Algebras, Springer, Berlin. | Zbl 0271.46039

[033] A. Browder [1969], States, numerical ranges, etc., Proc. Brown Univ. Informal Analysis Seminar, Providence.

[034] A. Browder [1971], On Bernstein's inequality and the norm of Hermitian operators, Amer. Math. Monthly 78, 871-873. | Zbl 0224.47011

[035] A. Brunel et R. Émilion [1984], Sur les opérateurs positifs à moyennes bornées, C. R. Acad. Sci. Paris Sér. I Math. 298, 103-106. | Zbl 0582.47038

[036] A. L. Bukhgeĭm [1988], Introduction to the Theory of Inverse Problems, Nauka, Novosibirsk (in Russian).

[037] L. Burlando [1994], Characterizations of nilpotent operators, letter. | Zbl 0802.46062

[038] L. Collatz [1963], Eigenwertaufgaben mit technischen Anwendungen, Geest & Portig, Leipzig.

[039] E. F. Collingwood and A. J. Lohwater [1966], The Theory of Cluster Sets, Cambridge University Press, Cambridge. | Zbl 0149.03003

[040] I. Colojoară and C. Foiaş [1968], Theory of Generalized Spectral Operators, Gordon and Breach, New York. | Zbl 0189.44201

[041] J. W. Daniel and T. W. Palmer [1969], On σ(T), ∥T∥, and T-1, Linear Algebra Appl. 2, 381-386.

[042] Y. Derriennic and M. Lin [1973], On invariant measures and ergodic theorems for positive operators, J. Funct. Anal. 13, 252-267. | Zbl 0262.28011

[043] P. Dienes [1931], The Taylor Series, Oxford University Press, Oxford. | Zbl 0003.15502

[044] W. F. Donoghue, Jr. [1963], On a problem of Nieminen, Inst. Hautes Études Sci. Publ. Math. 16, 127-129.

[045] R. S. Doran and V. A. Belfi [1986], Characterizations of C*-Algebras, Marcel Dekker, New York.

[046] N. Dunford [1943], Spectral theory. I. Convergence to projections, Trans. Amer. Math. Soc. 54, 185-217. | Zbl 0063.01185

[047] R. Emilion [1985], Mean-bounded operators and mean ergodic theorems, J. Funct. Anal. 61, 1-14. | Zbl 0562.47007

[048] J. Esterle [1983], Quasimultipliers, representations of H, and the closed ideal problem for commutative Banach algebras, in: Radical Banach Algebras and Automatic Continuity (Long Beach, Calif., 1981), J. M. Bachar, W. G. Bade, P. C. Curtis Jr., H. G. Dales, and M. P. Thomas (eds.), Lecture Notes in Math. 975, Springer, 66-162.

[049] J. Esterle [1994], Uniqueness, strong forms of uniqueness and negative powers of contractions, this volume, 127-145. | Zbl 0893.46043

[050] G. Faber [1903], Über die Fortsetzbarkeit gewisser Taylorscher Reihen, Math. Ann. 57, 369-388. | Zbl 34.0432.01

[051] C. Fernandez-Pujol [1988], Séries convergentes d'opérateurs dans un espace de Banach, C. R. Acad. Sci. Paris Sér. I Math. 306, 331-334. | Zbl 0646.47027

[052] I. Gelfand [1941a], Ideale und primäre Ideale in normierten Ringen, Mat. Sb. 9, 41-48. | Zbl 67.0406.03

[053] I. Gelfand [1941b], Zur Theorie der Charactere der Abelschen topologischen Gruppen, ibid. 9, 49-50. | Zbl 67.0407.02

[054] A. G. Gibson [1972], A discrete Hille-Yosida-Phillips theorem, J. Math. Anal. Appl. 39, 761-770. | Zbl 0213.14504

[055] I. Gohberg, S. Goldberg and M. A. Kaashoek [1990], Classes of Linear Operators I, Birkhäuser, Basel. | Zbl 0745.47002

[056] I. C. Gohberg and M. G. Kreĭn [1969], Introduction to the Theory of Linear Nonselfadjoint Operators, Amer. Math. Soc., Providence. | Zbl 0181.13504

[057] S. Grabiner [1971], Ranges of quasi-nilpotent operators, Illinois J. Math. 15, 150-152. | Zbl 0204.45003

[058] S. Grabiner [1974], Ranges of products of operators, Canad. J. Math. 26, 1430-1441. | Zbl 0259.47003

[059] S. Grabiner [1979], Operator ranges and invariant subspaces, Indiana Univ. Math. J. 28, 845-857. | Zbl 0456.47006

[060] S. Grabiner [1982], Uniform ascent and descent of bounded operators, J. Math. Soc. Japan 34, 317-337. | Zbl 0477.47013

[061] P. R. Halmos [1967], A Hilbert Space Problem Book, Von Nostrand, Princeton.

[062] E. Hille [1944], On the theory of characters of groups and semi-groups in normed vector rings, Proc. Nat. Acad. Sci. U.S.A. 30, 58-60. | Zbl 0061.25305

[063] E. Hille [1962], Analytic Function Theory II, Ginn, Boston. | Zbl 0102.29401

[064] E. Hille and R. S. Phillips [1957], Functional Analysis and Semi-Groups, Amer. Math. Soc., Providence. | Zbl 0078.10004

[065] R. A. Hirschfeld [1968], On semi-groups in Banach algebras close to the identity, Proc. Japan Acad. 44, 755. | Zbl 0172.40904

[066] V. I. Istrăţescu [1978], Topics in Linear Operator Theory, Academia Nazionale dei Lincei, Roma.

[067] B. Johnson [1971], Continuity of operators commuting with quasi-nilpotent operators, Indiana Univ. Math. J. 20, 913-915. | Zbl 0209.44903

[068] L. K. Jones and M. Lin [1980], Unimodular eigenvalues and weak mixing, J. Funct. Anal. 35, 42-48. | Zbl 0441.47009

[069] M. A. Kaashoek [1969], Locally compact semi-algebras and spectral theory, Nieuw Arch. Wisk. 17, 8-16. | Zbl 0183.42003

[070] M. A. Kaashoek and T. T. West [1968], Locally compact monothetic semi-algebras, Proc. London Math. Soc. 18, 428-438. | Zbl 0162.18601

[071] M. A. Kaashoek and T. T. West [1974], Locally Compact Semi-Algebras with Applications to Spectral Theory of Positive Operators, North-Holland, Amsterdam. | Zbl 0288.46043

[072] S. Kantorovitz [1965], Classification of operators by means of their operational calculus, Trans. Amer. Math. Soc. 115, 194-224. | Zbl 0127.07801

[073] V. È] . Katsnel'son [1970], Conservative operator has norm equal to its spectral radius, Mat. Issled. 5, no. 3, 186-189 (in Russian). | Zbl 0226.47002

[074] Y. Katznelson and L. Tzafriri [1986], On power bounded operators, J. Funct. Anal. 68, 313-328. | Zbl 0611.47005

[075] L. Kérchy [1994], Unitary asymptotes of Hilbert space operators, this volume, 191-201. | Zbl 0807.47005

[076] K. Knopp [1947], Theorie und Anwendung der unendlichen Reihen, Springer, Berlin. | Zbl 0031.11801

[077] J. J. Koliha [1974a], Some convergence theorems in Banach algebras, Pacific J. Math. 52, 467-473. | Zbl 0265.46049

[078] J. J. Koliha [1974b], Power convergence and pseudoinverses of operators in Banach spaces, J. Math. Anal. Appl. 48, 446-469. | Zbl 0292.47003

[079] J. Korevaar [1948], Entire functions of exponential type, Math. Centrum Amsterdam, Rapport ZW 1948-011, 10 pp. (in Dutch).

[080] J. Korevaar [1949a], Functions of exponential type bounded on sequences of points, Ann. Soc. Polon. Math. 22, 207-234. | Zbl 0035.34001

[081] J. Korevaar [1949b], A simple proof of a theorem of Pólya, Simon Stevin 26, 81-89. | Zbl 0032.06701

[082] E. Landau [1946], Darstellung und Begründung einiger neuerer Ergebnisse der Funktionentheorie, Chelsea, New York.

[083] D. C. Lay [1970], Spectral analysis using ascent, descent, nullity and defect, Math. Ann. 184, 197-214. | Zbl 0177.17102

[084] G. K. Leaf [1963], A spectral theory for a class of linear operators, Pacific J. Math. 13, 141-155. | Zbl 0121.33502

[085] L. Leau [1899], Recherches sur les singularités d'une fonction définie par un développement de Taylor, J. Math. Pures Appl. 5, 365-425. | Zbl 30.0368.04

[086] E. Le Roy [1900], Sur les séries divergentes et les fonctions définies par un développement de Taylor, Ann. Fac. Sci. Toulouse Math. 2, 317-430.

[087] B. Ja. Levin [1964], Distribution of Zeros of Entire Functions, Amer. Math. Soc., Providence.

[088] E. Lindelöf [1905], Le Calcul des Résidus, et ses Applications à la Théorie des Fonctions, Gauthier-Villars, Paris. | Zbl 36.0468.01

[089] E. R. Lorch [1941], The integral representation of weakly almost-periodic transformations in reflexive vector spaces, Trans. Amer. Math. Soc. 49, 18-40. | Zbl 67.0415.01

[090] C. Lubich and O. Nevanlinna [1991], On resolvent conditions and stability estimates, BIT 31, 293-313. | Zbl 0731.65043

[091] G. Lumer [1961], Semi-inner-product spaces, Trans. Amer. Math. Soc. 100, 29-43. | Zbl 0102.32701

[092] G. Lumer [1964], Spectral operators, hermitian operators, and bounded groups, Acta Sci. Math. (Szeged) 25, 75-85. | Zbl 0168.12103

[093] G. Lumer [1971], Bounded groups and a theorem of Gelfand, Rev. Un. Mat. Argentina 25, 239-245. | Zbl 0324.46047

[094] G. Lumer and R. S. Phillips [1961], Dissipative operators in a Banach space, Pacific J. Math. 11, 679-698. | Zbl 0101.09503

[095] Yu. I. Lyubich and Vũ Quôc Phóng [1988], Asymptotic stability of linear differential equations in Banach spaces, Studia Math. 88, 37-42.

[096] A. I. Markushevich [1976], Selected Chapters in the Theory of Analytic Functions, Nauka, Moscow (in Russian). | Zbl 0459.30001

[097] M. Mbekhta et J. Zemánek [1993], Sur le théorème ergodique uniforme et le spectre, C. R. Acad. Sci. Paris Sér. I Math. 317, 1155-1158.

[098] C. A. McCarthy [1971], A strong resolvent condition does not imply power-boundedness, Chalmers Institute of Technology and the University of Göteborg, Preprint no. 15, Göteborg.

[099] C. A. McCarthy and J. Schwartz [1965], On the norm of a finite Boolean algebra of projections, and applications to theorems of Kreiss and Morton, Comm. Pure Appl. Math. 18, 191-201. | Zbl 0151.19401

[100] P. Meyer-Nieberg [1991], Banach Lattices, Springer, Berlin. | Zbl 0743.46015

[101] A. Mokhtari [1988], Distance entre éléments d'un semi-groupe continu dans une algèbre de Banach, J. Operator Theory 20, 375-380. | Zbl 0713.46034

[102] V. Müller [1994], Local behaviour of operators, this volume, 251-258. | Zbl 0820.47001

[103] O. Nevanlinna [1993], Convergence of Iterations for Linear Equations, Birkhäuser, Basel. | Zbl 0846.47008

[104] T. Nieminen [1962], A condition for the self-adjointness of a linear operator, Ann. Acad. Sci. Fenn. Ser. A I No. 316, 5 pp. | Zbl 0171.34502

[105] J. I. Nieto [1982], Opérateurs à itérés uniformément bornés, Canad. Math. Bull. 25, 355-360. | Zbl 0524.47004

[106] N. K. Nikol'skiĭ [1977], A Tauberian theorem for the spectral radius, Siberian Math. J. 18, 969-972.

[107] K. Noshiro [1960], Cluster Sets, Springer, Berlin.

[108] N. Obreschkoff [1934], Lösung der Aufgabe 106, Jahresber. Deutsch. Math.-Verein. 43, 2. Abt., 13-15.

[109] R. E. A. C. Paley and N. Wiener [1934], Fourier Transforms in the Complex Domain, Amer. Math. Soc., New York. | Zbl 0011.01601

[110] A. Pazy [1983], Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York. | Zbl 0516.47023

[111] D. Petz [1994], A survey of certain trace inequalities, this volume, 287-298. | Zbl 0802.15012

[112] G. Pólya [1931a], Aufgabe 105, Jahresber. Deutsch. Math.-Verein. 40, 2. Abt., 80.

[113] G. Pólya [1931b], Aufgabe 106, ibid., 81.

[114] G. Pólya [1974], Collected Papers, Vol. I, Singularities of Analytic Functions, R. P. Boas (ed.), The MIT Press, Cambridge, Mass.

[115] G. Pólya und G. Szegö [1964], Aufgaben und Lehrsätze aus der Analysis, Springer, Berlin. | Zbl 0122.29704

[116] A. Pringsheim [1929], Kritisch-historische Bemerkungen zur Funktionentheorie, Sitzungsber. Bayer. Akad. Wiss. München, Math.-Natur. Abt., 95-124. | Zbl 55.0760.01

[117] A. Pringsheim [1932], Vorlesungen über Funktionenlehre II.2, Teubner, Leipzig. | Zbl 58.0296.18

[118] I. I. Privalov [1950], Boundary Properties of Analytic Functions, GITTL, Moscow (in Russian).

[119] D. Przeworska-Rolewicz and S. Rolewicz [1987], The only continuous Volterra right inverses in Cc[0,1] of the operator d/dt are at, Colloq. Math. 51, 281-285. | Zbl 0636.47028

[120] V. Pták [1976], The spectral radii of an operator and its modulus, Comment. Math. Univ. Carolin. 17, 273-279. | Zbl 0332.15003

[121] T. Pytlik [1987], Analytic semigroups in Banach algebras and a theorem of Hille, Colloq. Math. 51, 287-294. | Zbl 0632.46043

[122] H. Radjavi and P. Rosenthal [1973], Invariant Subspaces, Springer, Berlin. | Zbl 0269.47003

[123] M. Reed and B. Simon [1972], Methods of Modern Mathematical Physics, Vol. 1, Functional Analysis, Academic Press, New York. | Zbl 0242.46001

[124] R. Remmert [1991], Theory of Complex Functions, Springer, New York. | Zbl 0780.30001

[125] R. K. Ritt [1953], A condition that limnn-1Tn=0, Proc. Amer. Math. Soc. 4, 898-899.

[126] S. Rolewicz [1969], On orbits of elements, Studia Math. 32, 17-22. | Zbl 0174.44203

[127] H. C. Rönnefarth [1993], Charakterisierung des Verhaltens der Potenzen eines Elementes einer Banach-Algebra durch Spektraleigenschaften, Diplomarbeit, Technische Universität Berlin, Berlin, 77 pp.

[128] G. Sansone [1959], Orthogonal Functions, Interscience, New York. | Zbl 0084.06106

[129] R. Sato [1979], The Hahn-Banach theorem implies Sine's mean ergodic theorem, Proc. Amer. Math. Soc. 77, 426. | Zbl 0434.47010

[130] R. Sato [1981], On a mean ergodic theorem, ibid. 83, 563-564. | Zbl 0469.47012

[131] H. H. Schaefer [1974], Banach Lattices and Positive Operators, Springer, Berlin. | Zbl 0296.47023

[132] C. Schmoeger [1993], On isolated points of the spectrum of a bounded linear operator, Proc. Amer. Math. Soc. 117, 715-719. | Zbl 0780.47019

[133] S. L. Segal [1981], Nine Introductions in Complex Analysis, North-Holland, Amsterdam. | Zbl 0482.30002

[134] S. M. Shah [1946], On the singularities of a class of functions on the unit circle, Bull. Amer. Math. Soc. 52, 1053-1056. | Zbl 0061.14603

[135] S.-Y. Shaw [1980], Ergodic projections of continuous and discrete semigroups, Proc. Amer. Math. Soc. 78, 69-76. | Zbl 0394.47020

[136] A. L. Shields [1978], On Möbius bounded operators, Acta Sci. Math. (Szeged) 40, 371-374. | Zbl 0358.47025

[137] G. E. Shilov [1950], On a theorem of I. M. Gel'fand and its generalizations, Dokl. Akad. Nauk SSSR 72, 641-644 (in Russian). | Zbl 0039.33601

[138] V. S. Shul'man [1994], Invariant subspaces and spectral mapping theorems, this volume, 313-325.

[139] A. M. Sinclair [1971], The norm of a Hermitian element in a Banach algebra, Proc. Amer. Math. Soc. 28, 446-450. | Zbl 0242.46035

[140] R. Sine [1969], A note on rays at the identity operator, ibid. 23, 546-547. | Zbl 0186.19203

[141] R. Sine [1970], A mean ergodic theorem, ibid. 24, 438-439. | Zbl 0191.42204

[142] B. M. Solomyak [1982], The existence of invariant subspaces for operators with nonsymmetric growth of the resolvent, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 107, 204-208, 233-234 (in Russian). | Zbl 0531.47005

[143] B. M. Solomyak [1983], Calculuses, annihilators and hyperinvariant subspaces, J. Operator Theory 9, 341-370. | Zbl 0617.47003

[144] J. G. Stampfli [1967], An extreme point theorem for inverses in a Banach algebra with identity, Proc. Cambridge Philos. Soc. 63, 993-994. | Zbl 0185.38602

[145] J. G. Stampfli and J. P. Williams [1968], Growth conditions and the numerical range in a Banach algebra, Tôhoku Math. J. 20, 417-424. | Zbl 0175.43902

[146] M. H. Stone [1948], On a theorem of Pólya, J. Indian Math. Soc. 12, 1-7. | Zbl 0031.05702

[147] J. C. Strikwerda [1989], Finite Difference Schemes and Partial Differential Equations, Wadsworth & Brooks/Cole, Pacific Grove, Calif. | Zbl 0681.65064

[148] J. C. Strikwerda and B. A. Wade [1991], Cesàro means and the Kreiss matrix theorem, Linear Algebra Appl. 145, 89-106. | Zbl 0724.15021

[149] A. Święch [1990], Spectral characterization of operators with precompact orbit, Studia Math. 96, 277-282; 97, 266. | Zbl 0725.47003

[150] G. Szegö [1934], Lösung der Aufgabe 105, Jahresber. Deutsch. Math.-Verein. 43, 2. Abt., 10-11.

[151] G. Szegö [1959], Orthogonal Polynomials, Amer. Math. Soc., New York. | Zbl 0089.27501

[152] B. Sz.-Nagy [1947], On uniformly bounded linear transformations in Hilbert space, Acta Sci. Math. (Szeged) 11, 152-157.

[153] A. E. Taylor and D. C. Lay [1980], Introduction to Functional Analysis, Wiley, New York. | Zbl 0501.46003

[154] E. C. Titchmarsh [1939], The Theory of Functions, Oxford University Press. | Zbl 0022.14602

[155] F. G. Tricomi [1955], Vorlesungen über Orthogonalreihen, Springer, Berlin. | Zbl 0065.29601

[156] L. Tschakaloff [1934], Zweite Lösung der Aufgabe 105, Jahresber. Deutsch. Math.-Verein. 43, 2. Abt., 11-13.

[157] G. Valiron [1925], Sur la formule d'interpolation de Lagrange, Bull. Sci. Math. 49, 181-192, 203-224. | Zbl 51.0250.02

[158] G. Valiron [1954], Fonctions Analytiques, Presses Universitaires de France, Paris.

[159] J. A. Van Casteren [1985], Generators of Strongly Continuous Semigroups, Pitman, London. | Zbl 0576.47023

[160] I. Vidav [1956], Eine metrische Kennzeichnung der selbstadjungierten Operatoren, Math. Z. 66, 121-128. | Zbl 0071.11503

[161] I. Vidav [1982], Linear Operators in Banach Spaces, Društvo Matematikov, Fizikov in Astronomov SR Slovenije, Ljubljana (in Slovenian).

[162] Vũ Quôc Phóng [1992], A short proof of the Y. Katznelson's and L. Tzafriri's theorem, Proc. Amer. Math. Soc. 115, 1023-1024. | Zbl 0781.47003

[163] Vũ Quôc Phóng [1993], Semigroups with nonquasianalytic growth, Studia Math. 104, 229-241. | Zbl 0813.47047

[164] H.-D. Wacker [1985], Über die Verallgemeinerung eines Ergodensatzes von Dunford, Arch. Math. (Basel) 44, 539-546. | Zbl 0555.47008

[165] L. J. Wallen [1967], On the magnitude of xn-1 in a normed algebra, Proc. Amer. Math. Soc. 18, 956. | Zbl 0172.40903

[166] J. Wermer [1952], The existence of invariant subspaces, Duke Math. J. 19, 615-622. | Zbl 0047.35806

[167] D. V. Widder [1941], The Laplace Transform, Princeton University Press, Princeton. | Zbl 0063.08245

[168] S. Wigert [1900], Sur les fonctions entières, Öfversigt af Kongl. Vetenskaps-Akademiens Förhandlingar, Stockholm, No. 8, 1001-1011.

[169] W. Wils [1969], On semigroups near the identity, Proc. Amer. Math. Soc. 21, 762-763. | Zbl 0181.41002

[170] F. Wolf [1957], Operators in Banach space which admit a generalized spectral decomposition, Indag. Math. 19, 302-311. | Zbl 0077.31701

[171] N. J. Young [1978], Analytic programmes in matrix algebras, Proc. London Math. Soc. 36, 226-242. | Zbl 0379.65023

[172] B. Zalar [1993], History of the Vidav theorem, Obzornik Mat. Fiz. 40, 9-14 (in Slovenian). | Zbl 0763.46001

[173] M. Zarrabi [1993], Contractions à spectre dénombrable et propriétés d'unicité des fermés dénombrables du cercle, Ann. Inst. Fourier (Grenoble) 43, 251-263.

[174] M. Zarrabi [to appear], Spectral synthesis and applications to C₀-groups, J. Austral. Math. Soc. Ser. A. | Zbl 0854.47026

[175] J. Zemánek [à paraître], Sur les itérations des opérateurs, Publ. Math. Univ. Pierre et Marie Curie, Séminaire d'Initiation à l'Analyse.

[176] X.-D. Zhang [1992], Two simple proofs of a theorem of Schaefer, Wolff and Arendt