@article{bwmeta1.element.bwnjournal-article-bcpv30z1p35bwm, author = {Batty, C.}, title = {Asymptotic behaviour of semigroups of operators}, journal = {Banach Center Publications}, volume = {29}, year = {1994}, pages = {35-52}, zbl = {0818.47034}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv30z1p35bwm} }
Batty, C. Asymptotic behaviour of semigroups of operators. Banach Center Publications, Tome 29 (1994) pp. 35-52. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv30z1p35bwm/
[000] [1] H. Alexander, On a problem of Stolzenberg in polynomial convexity, Illinois J. Math. 22 (1978), 149-160. | Zbl 0376.32013
[001] [2] G. R. Allan, A. G. O'Farrell and T. J. Ransford, A Tauberian theorem arising in operator theory, Bull. London Math. Soc. 19 (1987), 537-545. | Zbl 0652.46041
[002] [3] G. R. Allan and T. J. Ransford, Power-dominated elements in a Banach algebra, Studia Math. 94 (1989), 63-79. | Zbl 0705.46021
[003] [4] W. Arendt, Resolvent positive operators, Proc. London Math. Soc. 54 (1987), 321-349. | Zbl 0617.47029
[004] [5] W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups, Trans. Amer. Math. Soc. 306 (1988), 837-852. | Zbl 0652.47022
[005] [6] W. Arendt and C. J. K. Batty, A complex Tauberian theorem and mean ergodic semigroups, preprint. | Zbl 0836.47032
[006] [7] W. Arendt, F. Neubrander and U. Schlotterbeck, Interpolation of semigroups and integrated semigroups, Semesterbericht Funktionalanalysis Tübingen 15 (1988/89), 1-14. | Zbl 0782.47035
[007] [8] W. Arendt and J. Prüss, Vector-valued Tauberian theorems and asymptotic behavior of linear Volterra equations, SIAM J. Appl. Math. 23 (1992), 412-448. | Zbl 0765.45009
[008] [9] R. Arens, Inverse-producing extensions of normed algebras, Trans. Amer. Math. Soc. 88 (1958), 536-548. | Zbl 0082.11105
[009] [10] C. J. K. Batty, Tauberian theorems for the Laplace-Stieltjes transform, ibid. 322 (1990), 783-804. | Zbl 0716.44001
[010] [11] C. J. K. Batty and D. A. Greenfield, On the invertibility of isometric semigroup representations, preprint. | Zbl 0803.47033
[011] [12] C. J. K. Batty and Vũ Quôc Phóng, Stability of individual elements under one-parameter semigroups, Trans. Amer. Math. Soc. 322 (1990), 805-818.
[012] [13] C. J. K. Batty and Vũ Quôc Phóng, Stability of strongly continuous representations of abelian semigroups, Math. Z. 209 (1992), 75-88.
[013] [14] E. B. Davies, One-Parameter Semigroups, Academic Press, London, 1980. | Zbl 0457.47030
[014] [15] O. El Mennaoui, Comportement asymptotique des semi-groupes intégrés, J. Comput. Appl. Math., to appear.
[015] [16] J. Esterle, E. Strouse and F. Zouakia, Theorems of Katznelson-Tzafriri type for contractions, J. Funct. Anal. 94 (1990), 273-287. | Zbl 0723.47013
[016] [17] J. Esterle, E. Strouse and F. Zouakia, Stabilité asymptotique de certains semigroupes d'opérateurs, J. Operator Theory, to appear.
[017] [18] I. Gelfand, Zur Theorie der Charaktere der abelschen topologischen Gruppen, Mat. Sb. 9 (51) (1941), 49-50. | Zbl 67.0407.02
[018] [19] D. A. Greenfield, D.Phil. thesis, Oxford, in preparation.
[019] [20] E. Hille and R. S. Phillips, Functional Analysis and Semi-groups, Amer. Math. Soc., Providence, 1957.
[020] [21] S. Huang and F. Räbiger, Superstable -semigroups on Banach spaces, preprint. | Zbl 0798.47034
[021] [22] A. E. Ingham, On Wiener's method in Tauberian theorems, Proc. London Math. Soc. 38 (1935), 458-480. | Zbl 0010.35202
[022] [23] Y. Katznelson and L. Tzafriri, On power bounded operators, J. Funct. Anal. 68 (1986), 313-328. | Zbl 0611.47005
[023] [24] J. Korevaar, On Newman's quick way to the prime number theorem, Math. Intelligencer 4 (1982), 108-115. | Zbl 0496.10027
[024] [25] U. Krengel, Ergodic Theorems, de Gruyter, Berlin, 1985.
[025] [26] Yu. I. Lyubich, On the spectrum of a representation of an abelian topological group, Dokl. Akad. Nauk SSSR 200 (1971), 777-780 (in Russian); English transl.: Soviet Math. Dokl. 12 (1971), 1482-1486.
[026] [27] Yu. I. Lyubich, Introduction to the Theory of Banach Representations of Groups, Birkhäuser, Basel, 1988.
[027] [28] Yu. I. Lyubich and Vũ Quôc Phóng, Asymptotic stability of linear differential equations on Banach spaces, Studia Math. 88 (1988), 37-42. | Zbl 0639.34050
[028] [29] Yu. I. Lyubich and Vũ Quôc Phóng, A spectral criterion for almost periodicity of one-parameter semigroups, Teor. Funktsiĭ Funktsional. Anal. i Prilozhen. 47 (1987), 36-41 (in Russian).
[029] [30] Yu. I. Lyubich and Vũ Quôc Phóng, A spectral criterion for almost periodicity of representations of abelian semigroups, ibid. 51 (1987) (in Russian).
[030] [31] R. Nagel and F. Räbiger, Superstable operators on Banach spaces, Israel J. Math. 81 (1993), 213-226. | Zbl 0788.47003
[031] [32] B. Sz.-Nagy and C. Foiaş, Harmonic Analysis of Operators on Hilbert Space, North-Holland, Amsterdam, 1970. | Zbl 0201.45003
[032] [33] D. J. Newman, Simple analytic proof of the prime number theorem, Amer. Math. Monthly 87 (1980), 693-696. | Zbl 0444.10033
[033] [34] G. K. Pedersen, C*-Algebras and Their Automorphism Groups, Academic Press, London, 1979. | Zbl 0416.46043
[034] [35] Vũ Quôc Phóng, Theorems of Katznelson-Tzafriri type for semigroups of operators, J. Funct. Anal. 103 (1992), 74-84. | Zbl 0770.47017
[035] [36] G. M. Sklyar and V. Ya. Shirman, On the asymptotic stability of a linear differential equation in a Banach space, Teor. Funktsiĭ Funktsional. Anal. i Prilozhen. 37 (1982), 127-132 (in Russian). | Zbl 0521.34063
[036] [37] G. Stolzenberg, Polynomially and rationally convex sets, Acta Math. 109 (1963), 259-289. | Zbl 0122.08404
[037] [38] E. L. Stout, The Theory of Uniform Algebras, Bogden & Quigley, Tarrytown-on-Hudson, 1971. | Zbl 0286.46049
[038] [39] J. Wermer, Banach Algebras and Several Complex Variables, Springer, New York, 1976.
[039] [40] W. Żelazko, On a certain class of non-removable ideals in Banach algebras, Studia Math. 44 (1972), 87-92. | Zbl 0213.40603