This is a survey paper on additive combinations of certain special-type operators on a Hilbert space. We consider (finite) linear combinations, sums, convex combinations and/or averages of operators from the classes of diagonal operators, unitary operators, isometries, projections, symmetries, idempotents, square-zero operators, nilpotent operators, quasinilpotent operators, involutions, commutators, self-commutators, norm-attaining operators, numerical-radius-attaining operators, irreducible operators and cyclic operators. In each case, we are mainly concerned with the characterization of such combinations and the minimal number of the special operators required in them. We will omit the proofs of most of the results here but give some indication or brief sketch of the ideas behind and point out the remaining open problems.
@article{bwmeta1.element.bwnjournal-article-bcpv30z1p337bwm, author = {Wu, Pei}, title = {Additive combinations of special operators}, journal = {Banach Center Publications}, volume = {29}, year = {1994}, pages = {337-361}, zbl = {0814.47001}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv30z1p337bwm} }
Wu, Pei. Additive combinations of special operators. Banach Center Publications, Tome 29 (1994) pp. 337-361. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv30z1p337bwm/
[000] [1] J. Anderson, Commutators of compact operators, J. Reine Angew. Math. 291 (1977), 128-132. | Zbl 0341.47025
[001] [2] I. D. Berg, An extension of the Weyl-von Neumann theory to normal operators, Trans. Amer. Math. Soc. 160 (1971), 365-371. | Zbl 0212.15903
[002] [3] I. D. Berg and B. Sims, Denseness of operators which attain their numerical radius, J. Austral. Math. Soc. 36A (1984), 130-133. | Zbl 0561.47004
[003] [4] R. Bouldin, The essential minimum modulus, Indiana Univ. Math. J. 30 (1981), 513-517. | Zbl 0483.47015
[004] [5] A. Brown and C. Pearcy, Structure of commutators of operators, Ann. of Math. 82 (1965), 112-127. | Zbl 0131.12302
[005] [6] M.-D. Choi and P. Y. Wu, Convex combinations of projections, Linear Algebra Appl. 136 (1990), 25-42. | Zbl 0721.15007
[006] [7] M.-D. Choi and P. Y. Wu, Sums of projections, to appear.
[007] [8] Ch. Davis, Separation of two linear subspaces, Acta Sci. Math. (Szeged) 19 (1958), 172-187. | Zbl 0090.32603
[008] [9] P. Fan and C. K. Fong, Which operators are the self-commutators of compact operators?, Proc. Amer. Math. Soc. 80 (1980), 58-60. | Zbl 0442.47024
[009] [10] P. Fan and C. K. Fong, Operators similar to zero diagonal operators, Proc. Roy. Irish Acad. 87A (1988), 147-153. | Zbl 0651.47013
[010] [11] P. A. Fillmore, Sums of operators with square zero, Acta Sci. Math. (Szeged) 28 (1967), 285-288. | Zbl 0159.19302
[011] [12] P. A. Fillmore, On similarity and the diagonal of a matrix, Amer. Math. Monthly 76 (1969), 167-169. | Zbl 0175.02403
[012] [13] P. A. Fillmore, On sums of projections, J. Funct. Anal. 4 (1969), 146-152. | Zbl 0176.43404
[013] [14] P. A. Fillmore and D. M. Topping, Sums of irreducible operators, Proc. Amer. Math. Soc. 20 (1969), 131-133. | Zbl 0165.47702
[014] [15] C. K. Fong, C. R. Miers and A. R. Sourour, Lie and Jordan ideals of operators on Hilbert space, ibid. 84 (1982), 516-520. | Zbl 0509.47035
[015] [16] C. K. Fong and G. J. Murphy, Averages of projections, J. Operator Theory 13 (1985), 219-225. | Zbl 0614.47011
[016] [17] C. K. Fong and G. J. Murphy, Ideals and Lie ideals of operators, Acta Sci. Math. (Szeged) 51 (1987), 441-456. | Zbl 0659.47040
[017] [18] C. K. Fong and A. R. Sourour, Sums and products of quasi-nilpotent operators, Proc. Royal Soc. Edinburgh 99A (1984), 193-200. | Zbl 0598.47016
[018] [19] C. K. Fong and P. Y. Wu, Diagonal operators: dilation, sum and product, Acta Sci. Math. (Szeged) 57 (1993), 125-138. | Zbl 0819.47047
[019] [20] U. Haagerup, On convex combinations of unitary operators in C*-algebras, in: Mappings of Operator Algebras, H. Araki and R. V. Kadison (eds.), Birkhäuser, Boston, 1991, 1-13. | Zbl 0772.47020
[020] [21] P. R. Halmos, Commutators of operators, Amer. J. Math. 74 (1952), 237-240. | Zbl 0046.12302
[021] [22] P. R. Halmos, Commutators of operators, II, ibid. 76 (1954), 191-198. | Zbl 0055.10705
[022] [23] P. R. Halmos, Two subspaces, Trans. Amer. Math. Soc. 144 (1969), 381-389. | Zbl 0187.05503
[023] [24] P. R. Halmos, A Hilbert Space Problem Book, 2nd ed., Springer, New York, 1982.
[024] [25] R. E. Hartwig and M. S. Putcha, When is a matrix a difference of two idempotents?, Linear Multilinear Algebra 26 (1990), 267-277. | Zbl 0696.15010
[025] [26] R. E. Hartwig and M. S. Putcha, When is a matrix a sum of idempotents?, ibid. 26 (1990), 279-286. | Zbl 0696.15011
[026] [27] R. B. Holmes, Best approximation by normal operators, J. Approx. Theory 12 (1974), 412-417. | Zbl 0291.41025
[027] [28] S. Izumino, Inequalities on operators with index zero, Math. Japon. 5 (1979), 565-572. | Zbl 0411.47006
[028] [29] R. V. Kadison and G. K. Pedersen, Means and convex combinations of unitary operators, Math. Scand. 57 (1985), 249-266. | Zbl 0573.46034
[029] [30] N. J. Kalton, Trace-class operators and commutators, J. Funct. Anal. 86 (1989), 41-74. | Zbl 0684.47017
[030] [31] J. Lindenstrauss, On operators which attain their norm, Israel J. Math. 1 (1963), 139-148. | Zbl 0127.06704
[031] [32] K. Matsumoto, Self-adjoint operators as a real span of 5 projections, Math. Japon. 29 (1984), 291-294. | Zbl 0549.47007
[032] [33] Y. Nakamura, Every Hermitian matrix is a linear combination of four projections, Linear Algebra Appl. 61 (1984), 133-139. | Zbl 0547.15012
[033] [34] K. Nishio, The structure of a real linear combination of two projections, ibid. 66 (1985), 169-176. | Zbl 0584.47014
[034] [35] C. L. Olsen, Unitary approximation, J. Funct. Anal. 85 (1989), 392-419. | Zbl 0684.46049
[035] [36] C. L. Olsen and G. K. Pedersen, Convex combinations of unitary operators in von Neumann algebras, ibid. 66 (1986), 365-380. | Zbl 0597.46061
[036] [37] A. Paszkiewicz, Any self-adjoint operator is a finite linear combination of projections, Bull. Acad. Polon. Sci. Sér. Sci. Math. 28 (1980), 227-245. | Zbl 0495.47003
[037] [38] C. Pearcy and D. M. Topping, Sums of small numbers of idempotents, Michigan Math. J. 14 (1967), 453-465. | Zbl 0156.38102
[038] [39] H. Radjavi, Structure of A*A-AA*, J. Math. Mech. 16 (1966), 19-26.
[039] [40] H. Radjavi, Every operator is the sum of two irreducible ones, Proc. Amer. Math. Soc. 21 (1969), 251-252. | Zbl 0182.45903
[040] [41] F. Riesz and B. Sz.-Nagy, Functional Analysis, Frederick Ungar, New York, 1955. | Zbl 0070.10902
[041] [42] M. Rοrdam, Advances in the theory of unitary rank and regular approximation, Ann. of Math. 128 (1988), 153-172. | Zbl 0659.46052
[042] [43] J. G. Stampfli, Sums of projections, Duke Math. J. 31 (1964), 455-461. | Zbl 0127.06702
[043] [44] B.-S. Tam, A simple proof of the Goldberg-Straus theorem on numerical radii, Glasgow Math. J. 28 (1986), 139-141. | Zbl 0605.15019
[044] [45] D. M. Topping, On linear combinations of special operators, J. Algebra 10 (1968), 516-521. | Zbl 0185.38801
[045] [46] J.-H. Wang, Decomposition of operators into quadratic types, Ph.D. dissertation, National Chiao Tung Univ., Hsinchu, Taiwan, 1991.
[046] [47] J.-H. Wang, The length problem for idempotent sum, Linear Algebra Appl., to appear.
[047] [48] J.-H. Wang, Linear combination of idempotents, to appear.
[048] [49] J.-H. Wang and P. Y. Wu, Sums of square-zero operators, Studia Math. 99 (1991), 115-127. | Zbl 0745.47006
[049] [50] J.-H. Wang and P. Y. Wu, Difference and similarity models of two idempotent operators, Linear Algebra Appl., to appear. | Zbl 0803.47021
[050] [51] P. Y. Wu, Sums of idempotent matrices, ibid. 142 (1990), 43-54.
[051] [52] P. Y. Wu, Sums and products of cyclic operators, Proc. Amer. Math. Soc., to appear. | Zbl 0816.47015