Introduction. The aim of this paper is to review some relevant results concerning the geometry of nonassociative normed algebras, without assuming in the first instance that such algebras satisfy any familiar identity, like associativity, commutativity, or Jordan axiom. In the opinion of the author, the most impressive fact in this direction is that most of the celebrated natural geometric conditions that can be required for associative normed algebras, when imposed on a general nonassociative normed algebra, imply that the algebra is actually "nearly associative". We shall explain this idea by selecting four favourite topics, namely: • Nonassociative Vidav-Palmer theorem, • Nonassociative Gelfand-Naimark theorem, • Nonassociative smooth normed algebras, and • One-sided division absolute valued algebras. Although there are classical nice forerunners in this circle of ideas, as for example the Albert-Urbanik-Wright determination of (nonassociative) absolute valued algebras with a unit ([2], [3], [42], and [41]), a systematic treatment of questions of this type has been made only recently, more precisely since 1980 [34].
@article{bwmeta1.element.bwnjournal-article-bcpv30z1p299bwm, author = {Rodr\'\i guez Palacios, Angel}, title = {Nonassociative normed algebras: geometric aspects}, journal = {Banach Center Publications}, volume = {29}, year = {1994}, pages = {299-311}, zbl = {0839.46048}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv30z1p299bwm} }
Rodríguez Palacios, Angel. Nonassociative normed algebras: geometric aspects. Banach Center Publications, Tome 29 (1994) pp. 299-311. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv30z1p299bwm/
[00000] [1] C. A. Akemann and B. Russo, Geometry of the unit sphere of a C*-algebra and its dual, Pacific J. Math. 32 (1970), 575-585. | Zbl 0194.44204
[00001] [2] A. A. Albert, Absolute valued algebras, Ann. of Math. 48 (1947), 495-501. | Zbl 0029.01001
[00002] [3] A. A. Albert, Absolute valued algebraic algebras, Bull. Amer. Math. Soc. 55 (1949), 763-768; A note of correction, ibid. 55 (1949), 1191.
[00003] [4] E. M. Alfsen and E. G. Effros, Structure in real Banach spaces II, Ann. of Math. 96 (1972), 129-173. | Zbl 0248.46019
[00004] [5] K. Alvermann and G. Janssen, Real and complex non-commutative Jordan Banach algebras, Math. Z. 185 (1984), 105-113. | Zbl 0513.46044
[00005] [6] J. A. Anquela, F. Montaner and T. Cortés, On primitive Jordan algebras, J. Algebra, to appear. | Zbl 0801.17039
[00006] [7] J. A. Anquela, F. Montaner and T. Cortés, On maximal modular inner ideals in Jordan algebras, Comm. Algebra 21 (1993), 2537-2554. | Zbl 0798.17016
[00007] [8] C. Aparicio, F. Ocaña, R. Payá and A. Rodríguez, A non-smooth extension of Fréchet differentiability of the norm with applications to numerical ranges, Glasgow Math. J. 28 (1986), 121-137. | Zbl 0604.46021
[00008] [9] D. B. Blecher, Z. Ruan and A. M. Sinclair, A characterization of operator algebras, J. Funct. Anal. 89 (1990), 188-201. | Zbl 0714.46043
[00009] [10] F. F. Bonsall, Jordan algebras spanned by hermitian elements of a Banach algebra, Math. Proc. Cambridge Philos. Soc. 81 (1977), 3-13.
[00010] [11] F. F. Bonsall and J. Duncan, Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras, London Math. Soc. Lecture Note Ser. 2, Cambridge University Press, 1971. | Zbl 0207.44802
[00011] [12] R. Bott and J. Milnor, On the parallelizability of the spheres, Bull. Amer. Math. Soc. 64 (1958), 87-89. | Zbl 0082.16602
[00012] [13] R. B. Braun, Structure and representations of non-commutative C*-Jordan algebras, Manuscripta Math. 41 (1983), 139-171. | Zbl 0512.46055
[00013] [14] R. B. Braun, A Gelfand-Neumark theorem for C*-alternative algebras, Math. Z. 185 (1984), 225-242. | Zbl 0514.46047
[00014] [15] M. Cabrera and A. Rodríguez, Nonassociative ultraprime normed algebras, Quart. J. Math. Oxford 43 (1992), 1-7. | Zbl 0758.46037
[00015] [16] M. Cabrera and A. Rodríguez, New associative and nonassociative Gelfand-Naimark theorems, Manuscripta Math. 79 (1993), 197-208. | Zbl 0816.46050
[00016] [17] J. A. Cuenca, On one-sided division infinite-dimensional normed real algebras, Publ. Mat. 36 (1992), 485-488. | Zbl 0783.17001
[00017] [18] A. Fernández, E. Garcia and A. Rodríguez, A Zel'manov prime theorem for JB*-algebras, J. London Math. Soc. 46 (1992), 319-335. | Zbl 0723.17025
[00018] [19] A. Fernández and A. Rodríguez, Primitive noncommutative Jordan algebras with nonzero socle, Proc. Amer. Math. Soc. 96 (1986), 199-206. | Zbl 0585.17001
[00019] [20] Y. Friedman and B. Russo, The Gelfand-Naimark theorem for JB*-triples, Duke Math. J. 53 (1986), 139-148. | Zbl 0637.46049
[00020] [21] J. R. Giles, D. A. Gregory and B. Sims, Geometrical implications of upper semi-continuity of the duality mapping on a Banach space, Pacific J. Math. 79 (1978), 99-108. | Zbl 0399.46012
[00021] [22] H. Hanche-Olsen and E. Stormer, Jordan Operator Algebras, Monograph Stud. Math. 21, Pitman, 1984. | Zbl 0561.46031
[00022] [23] L. Hogben and K. McCrimmon, Maximal modular inner ideals and the Jacobson radical of a Jordan algebra, J. Algebra 68 (1981), 155-169. | Zbl 0449.17011
[00023] [24] N. Jacobson, Structure and Representations of Jordan Algebras, Amer. Math. Soc. Colloq. Publ. 39, Providence, R.I., 1968.
[00024] [25] R. V. Kadison, A representation theory for commutative topological algebras, Mem. Amer. Math. Soc. 7 (1951). | Zbl 0042.34801
[00025] [26] A. M. Kaidi, J. Martínez and A. Rodríguez, On a nonassociative Vidav-Palmer theorem, Quart. J. Math. Oxford 32 (1981), 435-442. | Zbl 0446.46043
[00026] [27] M. L. El-Mallah et A. Micali, Sur les dimensions des algèbres absolument valuées, J. Algebra 68 (1981), 237-246.
[00027] [28] J. Martínez, JV-algebras, Math. Proc. Cambridge Philos. Soc. 87 (1980), 47-50.
[00028] [29] J. Martínez, J. F. Mena, R. Payá and A. Rodríguez, An approach to numerical ranges without Banach algebra theory, Illinois J. Math. 29 (1985), 609-626. | Zbl 0604.46052
[00029] [30] K. McCrimmon and E. Zel'manov, The structure of strongly prime quadratic Jordan algebras, Adv. in Math. 69 (1988), 133-222. | Zbl 0656.17015
[00030] [31] J. I. Nieto, Gateaux differentials in Banach algebras, Math. Z. 139 (1974), 23-34. | Zbl 0275.46036
[00031] [32] R. Payá, J. Pérez and A. Rodríguez, Non-commutative Jordan C*-algebras, Manu- scripta Math. 37 (1982), 87-120.
[00032] [33] R. Payá, J. Pérez and A. Rodríguez, Type I factor representations of non-commutative JB*-algebras, Proc. London Math. Soc. 48 (1984), 428-444. | Zbl 0509.46052
[00033] [34] A. Rodríguez, A Vidav-Palmer theorem for Jordan C*-algebras and related topics, J. London Math. Soc. 22 (1980), 318-332.
[00034] [35] A. Rodríguez, Nonassociative normed algebras spanned by hermitian elements, Proc. London Math. Soc. 47 (1983), 258-274. | Zbl 0521.47036
[00035] [36] A. Rodríguez, An approach to Jordan-Banach algebras from the theory of nonassociative complete normed algebras, Ann. Sci. Univ. Clermont-Ferrand II Math. 27 (1991), 1-57. | Zbl 0768.17014
[00036] [37] A. Rodríguez, One-sided division absolute valued algebras, Publ. Mat. 36 (1992), 925-954. | Zbl 0797.46040
[00037] [38] R. D. Schafer, An Introduction to Nonassociative Algebras, Academic Press, New York, 1966. | Zbl 0145.25601
[00038] [39] E. Strzelecki, Power-associative regular real normed algebras, J. Austral. Math. Soc. 6 (1966), 193-209. | Zbl 0145.16504
[00039] [40] H. Upmeier, Symmetric Banach Manifolds and Jordan C*-algebras, North-Holland, Amsterdam, 1985.
[00040] [41] K. Urbanik and F. B. Wright, Absolute valued algebras, Proc. Amer. Math. Soc. 11 (1960), 861-866. | Zbl 0156.03801
[00041] [42] F. B. Wright, Absolute valued algebras, Proc. Nat. Acad. Sci. U.S.A. 39 (1953), 330-332. | Zbl 0050.03103
[00042] [43] J. D. M. Wright, Jordan C*-algebras, Michigan Math. J. 24 (1977), 291-302.
[00043] [44] J. D. M. Wright and M. A. Youngson, On isometries of Jordan algebras, J. London Math. Soc. 17 (1978), 339-344. | Zbl 0384.46041
[00044] [45] M. A. Youngson, A Vidav theorem for Banach Jordan algebras, Math. Proc. Cambridge Philos. Soc. 84 (1978), 263-272. | Zbl 0392.46038
[00045] [46] M. A. Youngson, Hermitian operators on Banach Jordan algebras, Proc. Edinburgh Math. Soc. 22 (1979), 93-104.
[00046] [47] E. Zel'manov, On prime Jordan algebras II, Siberian Math. J. 24 (1983), 89-104.