A survey of certain trace inequalities
Petz, Dénes
Banach Center Publications, Tome 29 (1994), p. 287-298 / Harvested from The Polish Digital Mathematics Library

This paper concerns inequalities like TrA ≤ TrB, where A and B are certain Hermitian complex matrices and Tr stands for the trace. In most cases A and B will be exponential or logarithmic expressions of some other matrices. Due to the interest of the author in quantum statistical mechanics, the possible applications of the trace inequalities will be commented from time to time. Several inequalities treated below have been established in the context of Hilbert space operators or operator algebras. Notwithstanding these extensions our discussion will be limited to matrices.

Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:262566
@article{bwmeta1.element.bwnjournal-article-bcpv30z1p287bwm,
     author = {Petz, D\'enes},
     title = {A survey of certain trace inequalities},
     journal = {Banach Center Publications},
     volume = {29},
     year = {1994},
     pages = {287-298},
     zbl = {0802.15012},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv30z1p287bwm}
}
Petz, Dénes. A survey of certain trace inequalities. Banach Center Publications, Tome 29 (1994) pp. 287-298. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv30z1p287bwm/

[000] [1] P. M. Alberti and A. Uhlmann, Stochasticity and Partial Order. Doubly Stochastic Maps and Unitary Mixing, Deutscher Verlag Wiss., Berlin, 1981. | Zbl 0474.46047

[001] [2] T. Ando, Majorization, doubly stochastic matrices and comparison of eigenvalues, Linear Algebra Appl. 118 (1989), 163-248. | Zbl 0673.15011

[002] [3] T. Ando, private communication, 1992.

[003] [4] H. Araki, Golden-Thompson and Peierls-Bogoliubov inequalities for a general von Neumann algebra, Comm. Math. Phys. 34 (1973), 167-178.

[004] [5] H. Araki, On an inequality of Lieb and Thirring, Lett. Math. Phys. 19 (1990), 167-170. | Zbl 0705.47020

[005] [6] V. P. Belavkin and P. Staszewski, C*-algebraic generalization of relative entropy and entropy, Ann. Inst. Henri Poincaré Sect. A 37 (1982), 51-58. | Zbl 0526.46060

[006] [7] D. S. Bernstein, Inequalities for trace of matrix exponentials, SIAM J. Matrix Anal. Appl. 9 (1988), 156-158. | Zbl 0658.15018

[007] [8] M. Breitenbecker and H. R. Grümm, Note on trace inequalities, Comm. Math. Phys. 26 (1972), 276-279. | Zbl 0254.47036

[008] [9] J. E. Cohen, Inequalities for matrix exponentials, Linear Algebra Appl. 111 (1988), 25-28. | Zbl 0662.15012

[009] [10] J. E. Cohen, S. Friedland, T. Kato and F. P. Kelly, Eigenvalue inequalities for products of matrix exponentials, ibid. 45 (1982), 55-95. | Zbl 0489.15007

[010] [11] S. Friedland and W. So, On the product of matrix exponentials, ibid. 196 (1994), 193-205. | Zbl 0792.15012

[011] [12] J. I. Fujii and E. Kamei, Relative operator entropy in noncommutative information theory, Math. Japon. 34 (1989), 341-348. | Zbl 0699.46048

[012] [13] S. Golden, Lower bounds for the Helmholtz function, Phys. Rev. 137 (1965), B1127-B1128.

[013] [14] F. Hiai, Some remarks on the trace operator logarithm and relative entropy, in: Quantum Probability and Related Topics VIII, World Sci., Singapore, to appear.

[014] [15] F. Hiai and D. Petz, The proper formula for relative entropy and its asymptotics in quantum probability, Comm. Math. Phys. 143 (1991), 99-114. | Zbl 0756.46043

[015] [16] F. Hiai and D. Petz, The Golden-Thompson trace inequality is complemented, Linear Algebra Appl. 181 (1993), 153-185. | Zbl 0784.15011

[016] [17] S. Klimek and A. Lesniewski, A Golden-Thompson inequality in supersymmetric quantum mechanics, Lett. Math. Phys. 21 (1991), 237-244. | Zbl 0723.58054

[017] [18] H. Kosaki, An inequality of Araki-Lieb-Thirring (von Neumann algebra case), Proc. Amer. Math. Soc. 114 (1992), 477-481. | Zbl 0762.46060

[018] [19] E. H. Lieb, Convex trace functions and the Wigner-Yanase-Dyson conjecture, Adv. in Math. 11 (1973), 267-288. | Zbl 0267.46055

[019] [20] A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and Its Applications, Academic Press, New York, 1979. | Zbl 0437.26007

[020] [21] A. W. Marshall and I. Olkin, Inequalities for the trace function, Aequationes Math. 29 (1985), 36-39.

[021] [22] D. Petz, Properties of quantum entropy, in: Quantum Probability and Applications II, L. Accardi and W. von Waldenfels (eds.), Lecture Notes in Math. 1136, Springer, 1985, 428-441. | Zbl 0583.46053

[022] [23] D. Petz, Sufficient subalgebras and the relative entropy of states on a von Neumann algebra, Comm. Math. Phys. 105 (1986), 123-131. | Zbl 0597.46067

[023] [24] D. Petz, A variational expression for the relative entropy, ibid. 114 (1988), 345-348.

[024] [25] D. Petz and J. Zemánek, Characterizations of the trace, Linear Algebra Appl. 111 (1988), 43-52. | Zbl 0661.15017

[025] [26] W. Pusz and S. L. Woronowicz, Functional calculus for sesquilinear forms and the purification map, Rep. Math. Phys. 8 (1975), 159-170. | Zbl 0327.46032

[026] [27] D. Ruelle, Statistical Mechanics. Rigorous Results, Benjamin, New York, 1969.

[027] [28] M. B. Ruskai, Inequalities for traces on von Neumann algebras, Comm. Math. Phys. 26 (1972), 280-289. | Zbl 0257.46101

[028] [29] M. B. Ruskai and F. K. Stillinger, Convexity inequalities for estimating free energy and relative entropy, J. Phys. A 23 (1990), 2421-2437. | Zbl 0709.60549

[029] [30] W. So, Equality cases in matrix exponential inequalities, SIAM J. Matrix Anal. Appl. 13 (1992), 1154-1158. | Zbl 0759.15017

[030] [31] R. F. Streater, Convergence of the quantum Boltzmann map, Comm. Math. Phys. 98 (1985), 177-185. | Zbl 0573.60094

[031] [32] C. J. Thompson, Inequality with applications in statistical mechanics, J. Math. Phys. 6 (1965), 1812-1813.

[032] [33] R. C. Thompson, High, low and qualitative roads in linear algebra, Linear Algebra Appl. 162-164 (1992), 23-64.