We survey some old and new results in the theory of derivations on Banach algebras. Although our overview is broad ranging, our principal interest is in recent results concerning conditions on a derivation implying that its range is contained in the radical of the algebra.
@article{bwmeta1.element.bwnjournal-article-bcpv30z1p267bwm, author = {Murphy, Gerard}, title = {Aspects of the theory of derivations}, journal = {Banach Center Publications}, volume = {29}, year = {1994}, pages = {267-275}, zbl = {0811.46045}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv30z1p267bwm} }
Murphy, Gerard. Aspects of the theory of derivations. Banach Center Publications, Tome 29 (1994) pp. 267-275. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv30z1p267bwm/
[000] [1] W. Bade and P. Curtis, Homomorphisms of commutative Banach algebras, Amer. J. Math. 82 (1960), 589-608. | Zbl 0093.12503
[001] [2] M. Brešar, Derivations decreasing the spectral radius, Arch. Math. (Basel) 61 (1993), 160-162. | Zbl 0818.46049
[002] [3] M. Brešar and J. Vukman, On left derivations and related mappings, Proc. Amer. Math. Soc. 110 (1990), 7-16. | Zbl 0703.16020
[003] [4] E. Christensen, Extensions of derivations II, Math. Scand. 50 (1882), 111-122. | Zbl 0503.47032
[004] [5] E. Christensen and A. M. Sinclair, A survey of completely bounded operators, Bull. London Math. Soc. 21 (1989), 417-448. | Zbl 0698.46044
[005] [6] B. E. Johnson and A. M. Sinclair, Continuity of derivations and a problem of Kaplansky, Amer. J. Math. 90 (1968), 1067-1073. | Zbl 0179.18103
[006] [7] I. Kaplansky, Functional analysis, in: Some Aspects of Analysis and Probability, Surveys Appl. Math. 4, New York, 1958, 1-34.
[007] [8] D. C. Kleinecke, On operator commutators, Proc. Amer. Math. Soc. 8 (1957), 535-536. | Zbl 0079.12904
[008] [9] M. Mathieu, Derivations and completely bounded maps on C*-algebras. A survey, preprint, University of Tübingen, 1990.
[009] [10] M. Mathieu and G. J. Murphy, Derivations mapping into the radical, Arch. Math. (Basel) 57 (1991), 469-474. | Zbl 0714.46038
[010] [11] M. Mathieu and V. Runde, Derivations mapping into the radical, II, Bull. London Math. Soc. 24 (1992), 485-487. | Zbl 0733.46023
[011] [12] G. J. Murphy, C*-Algebras and Operator Theory, Academic Press, New York, 1990.
[012] [13] G. K. Pedersen, C*-Algebras and their Automorphism Groups, Academic Press, New York, 1979. | Zbl 0416.46043
[013] [14] V. Pták, Commutators in Banach algebras, Proc. Edinburgh Math. Soc. 22 (1979), 207-211. | Zbl 0407.46043
[014] [15] C. E. Rickart, General Theory of Banach Algebras, Van Nostrand, New York, 1960. | Zbl 0095.09702
[015] [16] S. Sakai, Derivations of W*-algebras, Ann. of Math. 83 (1966), 273-279. | Zbl 0139.30601
[016] [17] S. Sakai, Derivations of simple C*-algebras, J. Funct. Anal. 2 (1968), 202-206. | Zbl 0172.41104
[017] [18] S. Sakai, Derivations of simple C*-algebras II, Bull. Soc. Math. France 99 (1971), 259-263. | Zbl 0216.41401
[018] [19] S. Sakai, Operator Algebras in Dynamical Systems, Cambridge University Press, Cambridge, 1991. | Zbl 0743.46078
[019] [20] F. V. Shirokov, Proof of a conjecture of Kaplansky, Uspekhi Mat. Nauk 11 (4) (1956), 167-168 (in Russian). | Zbl 0070.34201
[020] [21] A. M. Sinclair, Continuous derivations on Banach algebras, Proc. Amer. Math. Soc. 20 (1969), 166-170. | Zbl 0164.44603
[021] [22] I. M. Singer and J. Wermer, Derivations on commutative normed algebras, Math. Ann. 129 (1955), 260-264. | Zbl 0067.35101
[022] [23] M. P. Thomas, The image of a derivation is contained in the radical, Ann. of Math. 128 (1988), 435-460. | Zbl 0681.47016
[023] [24] M. P. Thomas, Primitive ideals and derivations on non-commutative Banach algebras, Pacific J. Math. 159 (1993), 139-152. | Zbl 0739.47014
[024] [25] Yu. V. Turovskiĭ and V. S. Shul'man, Conditions for massiveness of the range of the derivation of a Banach algebra and associated differential operators, Math. Notes 42 (1987), 669-674.
[025] [26] J. Zemánek, Properties of the spectral radius in Banach algebras, in: Spectral Theory, Banach Center Publ. 8, PWN, Warszawa, 1982, 579-595.