The notions of nil, nilpotent or PI-rings (= rings satisfying a polynomial identity) play an important role in ring theory (see e.g. [8], [11], [20]). Banach algebras with these properties have been studied considerably less and the existing results are scattered in the literature. The only exception is the work of Krupnik [13], where the Gelfand theory of Banach PI-algebras is presented. However, even this work has not get so much attention as it deserves. The present paper is an attempt to give a survey of results concerning Banach nil, nilpotent and PI-algebras. The author would like to thank to J. Zemánek for essential completion of the bibliography.
@article{bwmeta1.element.bwnjournal-article-bcpv30z1p259bwm, author = {M\"uller, Vladim\'\i r}, title = {Nil, nilpotent and PI-algebras}, journal = {Banach Center Publications}, volume = {29}, year = {1994}, pages = {259-265}, zbl = {0818.46052}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv30z1p259bwm} }
Müller, Vladimír. Nil, nilpotent and PI-algebras. Banach Center Publications, Tome 29 (1994) pp. 259-265. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv30z1p259bwm/
[00000] [1] P. G. Dixon, Locally finite Banach algebras, J. London Math. Soc. 8 (1974), 325-328. | Zbl 0283.46024
[00001] [2] P. G. Dixon, Topologically nilpotent Banach algebras and factorization, Proc. Roy. Soc. Edinburgh Sect. A 119 (1991), 329-341. | Zbl 0762.46039
[00002] [3] P. G. Dixon and V. Müller, A note on topologically nilpotent Banach algebras, Studia Math. 102 (1992), 269-275. | Zbl 0812.46038
[00003] [4] J. Dubnov et V. Ivanov, Sur l'abaissement du degré des polynômes en affineurs, C. R. (Doklady) Acad. Sci. URSS 41 (1943), 95-98.
[00004] [5] J. Duncan and A. W. Tullo, Finite dimensionality, nilpotents and quasinilpotents in Banach algebras, Proc. Edinburgh Math. Soc. 19 (1974/75), 45-49. | Zbl 0275.46038
[00005] [6] E. Formanek, The Nagata-Higman Theorem, Acta Appl. Math. 21 (1990), 185-192. | Zbl 0714.16018
[00006] [7] S. Grabiner, The nilpotency of Banach nil algebras, Proc. Amer. Math. Soc. 21 (1969), 510. | Zbl 0174.44602
[00007] [8] I. N. Herstein, Noncommutative Rings, Carus Math. Monographs 15, Math. Assoc. Amer., Wiley, 1968.
[00008] [9] G. Higman, On a conjecture of Nagata, Proc. Cambridge Philos. Soc. 52 (1956), 1-4. | Zbl 0072.02502
[00009] [10] R. A. Hirschfeld and B. E. Johnson, Spectral characterization of finite-dimensional algebras, Indag. Math. 34 (1972), 19-23. | Zbl 0232.46043
[00010] [11] N. Jacobson, Structure of Rings, third edition, Amer. Math. Soc. Colloq. Publ. 37, Amer. Math. Soc., Providence, R.I., 1968. | Zbl 0218.17010
[00011] [12] I. Kaplansky, Ring isomorphisms of Banach algebras, Canad. J. Math. 6 (1954), 374-381. | Zbl 0058.10505
[00012] [13] N. Ya. Krupnik, Banach Algebras with Symbol and Singular Integral Operators, Birkhäuser, Basel, 1987.
[00013] [14] E. N. Kuzmin, On the Nagata-Higman Theorem, in: Mathematical Structures-Computational Mathematics-Mathematical Modeling, Proceedings dedicated to the sixtieth birthday of Academician L. Iliev, Sofia, 1975, 101-107 (in Russian).
[00014] [15] V. Müller, Kaplansky's theorem and Banach PI-algebras, Pacific J. Math. 141 (1990), 355-361. | Zbl 0736.46044
[00015] [16] M. Nagata, On the nilpotency of nil-algebras, J. Math. Soc. Japan 4 (1952), 296-301. | Zbl 0049.02402
[00016] [17] K. M. Przyłuski and S. Rolewicz, On stability of linear time varying infinite-dimensional discrete-time systems, Systems Control Lett. 4 (1984), 307-315. | Zbl 0543.93057
[00017] [18] Y. P. Razmyslov, Trace identities of full matrix algebras over a field of characteristic zero, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 723-756 (in Russian).
[00018] [19] G. C. Rota and W. G. Strang, A note on the joint spectral radius, Indag. Math. 22 (1960), 379-381. | Zbl 0095.09701
[00019] [20] L. H. Rowen, Polynomial Identities in Ring Theory, Academic Press, New York, 1980. | Zbl 0461.16001
[00020] [21] V. S. Shul'man, On invariant subspaces of Volterra operators, Funct. Anal. Appl. 18 (1984), 85-86.
[00021] [22] Yu. V. Turovskiĭ, Spectral properties of certain Lie subalgebras and the spectral radius of subsets of a Banach algebra, in: Spectral Theory of Operators and its Applications, No. 6, Elm, Baku, 1985, 144-181 (in Russian).