Multipliers and local spectral theory
Laursen, Kjeld
Banach Center Publications, Tome 29 (1994), p. 223-236 / Harvested from The Polish Digital Mathematics Library
Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:262691
@article{bwmeta1.element.bwnjournal-article-bcpv30z1p223bwm,
     author = {Laursen, Kjeld},
     title = {Multipliers and local spectral theory},
     journal = {Banach Center Publications},
     volume = {29},
     year = {1994},
     pages = {223-236},
     zbl = {0810.47031},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv30z1p223bwm}
}
Laursen, Kjeld. Multipliers and local spectral theory. Banach Center Publications, Tome 29 (1994) pp. 223-236. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv30z1p223bwm/

[000] [AL] P. Aiena and K. B. Laursen, Multipliers with closed range on regular commutative Banach algebras, Proc. Amer. Math. Soc., to appear. | Zbl 0806.47032

[001] [A1] E. Albrecht, Decomposable systems of operators in harmonic analysis, in: Toeplitz Centennial, Birkhäuser, Basel, 1982, 19-35.

[002] [A2] E. Albrecht, Spectral decompositions for systems of commuting operators, Proc. Roy. Irish Acad. 81A (1981), 81-98.

[003] [Ap] C. Apostol, Decomposable multiplication operators, Rev. Roumaine Math. Pures Appl. 17 (1972), 323-333. | Zbl 0239.47013

[004] [BD] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, New York, 1973. | Zbl 0271.46039

[005] [CF] I. Colojoară and C. Foiaş, Theory of Generalized Spectral Operators, Gordon and Breach, New York, 1968. | Zbl 0189.44201

[006] [C] J. B. Conway, A Course in Functional Analysis, Springer, New York, 1985. | Zbl 0558.46001

[007] [DT] M. Dutta and U. B. Tewari, On multipliers of Segal algebras, Proc. Amer. Math. Soc. 72 (1978), 121-124. | Zbl 0426.43005

[008] [E] J. Eschmeier, Spectral decompositions and decomposable multipliers, Manuscripta Math. 51 (1985), 201-224. | Zbl 0578.47024

[009] [ELN] J. Eschmeier, K. B. Laursen and M. M. Neumann, Multipliers with natural local spectra on commutative Banach algebras, submitted. | Zbl 0897.46038

[010] [F] K.-H. Förster, Über die Invarianz einiger Räume, die zum Operator T - λA gehören, Arch. Math. (Basel) 17 (1966), 56-64. | Zbl 0127.07903

[011] [Fr] Şt. Frunză, A characterization of regular Banach algebras, Rev. Roumaine Math. Pures Appl. 18 (1973), 1057-1059. | Zbl 0276.46022

[012] [G] I. Glicksberg, When is μ*L₁ closed?, Trans. Amer. Math. Soc. 160 (1971), 419-425. | Zbl 0241.43005

[013] [GK] M. A. Gol'dman and S. N. Kračkovskiĭ, Invariance of certain spaces connected with the operator A - λI, Soviet Math. Dokl. 5 (1964), 102-104.

[014] [GMcG] C. C. Graham and O. C. McGehee, Essays in Commutative Harmonic Analysis, Springer, New York, 1979. | Zbl 0439.43001

[015] [H] H. Helson, Isomorphisms of abelian group algebras, Ark. Mat. 2 (1953), 475-487. | Zbl 0052.11802

[016] [HP] B. Host et F. Parreau, Sur un problème de I. Glicksberg: Les idéaux fermés de type fini de M(G), Ann. Inst. Fourier (Grenoble) 28 (3) (1978), 143-164. | Zbl 0368.43001

[017] [K] T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Analyse Math. 6 (1958), 261-322. | Zbl 0090.09003

[018] [L] R. Larsen, An Introduction to the Theory of Multipliers, Springer, New York, 1971. | Zbl 0213.13301

[019] [LN1] K. B. Laursen and M. M. Neumann, Decomposable multipliers and applications to harmonic analysis, Studia Math. 101 (1992), 193-214. | Zbl 0814.47045

[020] [LN2] K. B. Laursen and M. M. Neumann, Local spectral theory and spectral inclusions, Glasgow Math. J., to appear. | Zbl 0851.47002

[021] [LV1] K. B. Laursen and P. Vrbová, Some remarks on the surjectivity spectrum of linear operators, Czechoslovak Math. J. 39 (1989), 730-739. | Zbl 0715.47003

[022] [LV2] K. B. Laursen and P. Vrbová, Intertwiners and automatic continuity, J. London Math. Soc. (2) 43 (1991), 149-155. | Zbl 0679.47022

[023] [M] M. Mbekhta, Résolvant généralisé et théorie spectrale, J. Operator Theory 21 (1989), 69-105. | Zbl 0694.47002

[024] [MN] V. G. Miller and M. M. Neumann, Local spectral theory for multipliers and convolution operators, in: Proceedings of the Great Plains Operator Symposium at Iowa City, Birkhäuser, Basel, to appear.

[025] [N] M. M. Neumann, Commutative Banach algebras and decomposable operators, Monatsh. Math. 113 (1992), 227-243. | Zbl 0765.47010

[026] [PV] V. Pták and P. Vrbová, Algebraic spectral subspaces, Czechoslovak Math. J. 38 (1988), 173-179.

[027] [RW] L. T. Ramsey and B. B. Wells, Jr., Some results on the question: When is μ*L¹ closed?, Indiana Univ. Math. J. 26 (1977), 987-996.

[028] [S] C. Schmoeger, Ein Spektralabbildungssatz, Arch. Math. (Basel) 55 (1990), 484-489.

[029] [SW] M. Ó Searcóid and T. T. West, Continuity of the generalized kernel and range of semi-Fredholm operators, Math. Proc. Cambridge Philos. Soc. 105 (1989), 513-522. | Zbl 0686.47018

[030] [V1] F.-H. Vasilescu, Residually decomposable operators in Banach spaces, Tôhoku Math. J. 21 (1969), 509-522. | Zbl 0193.10001

[031] [V2] F.-H. Vasilescu, Analytic Functional Calculus, Reidel, Dordrecht, 1982.

[032] [W] J. G. Wendel, On isometric isomorphism of group algebras, Pacific J. Math. 1 (1951), 305-311. | Zbl 0043.03102

[033] [Z] M. Zafran, On the spectra of multipliers, ibid. 47 (1973), 609-626. | Zbl 0242.43006