Conjugacy and factorization results on matrix groups
Laffey, Thomas
Banach Center Publications, Tome 29 (1994), p. 203-221 / Harvested from The Polish Digital Mathematics Library

In this survey paper, we present (mainly without proof) a number of results on conjugacy and factorization in general linear groups over fields and commutative rings. We also present the additive analogue in matrix rings of some of these results. The first section deals with the question of expressing elements in the commutator subgroup of the general linear group over a field as (simple) commutators. In Section 2, the same kind of problem is discussed for the general linear group over a commutative ring. In Section 3, the analogous question for additive commutators is discussed. The case of integer matrices is given special emphasis as this is an area of current interest. In Section 4, factorizations of an element A ∈ GL(n,F) (F a field) in which at least one of the factors preserves some form (e.g. is symmetric or skew-symmetric) is considered. An application to the size of abelian subgroups of finite p-groups is presented. In Section 5, a curious interplay between additive and multiplicative commutators in Mn(F) (F a field) is identified for matrices of small size and a general factorization theorem for a polynomial using conjugates of its companion matrix is presented.

Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:262781
@article{bwmeta1.element.bwnjournal-article-bcpv30z1p203bwm,
     author = {Laffey, Thomas},
     title = {Conjugacy and factorization results on matrix groups},
     journal = {Banach Center Publications},
     volume = {29},
     year = {1994},
     pages = {203-221},
     zbl = {0802.15008},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv30z1p203bwm}
}
Laffey, Thomas. Conjugacy and factorization results on matrix groups. Banach Center Publications, Tome 29 (1994) pp. 203-221. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv30z1p203bwm/

[000] [ALB] A. A. Albert and B. Muckenhoupt, On matrices of trace zero, Michigan J. Math. 4 (1957), 1-3. | Zbl 0077.24304

[001] [ALP] J. L. Alperin, Large Abelian subgroups of p-groups, Trans. Amer. Math. Soc. 117 (1965), 10-20. | Zbl 0132.27204

[002] [BAL] C. S. Ballantine, Products of positive definite matrices, III, J. Algebra 10 (1968), 174-182; IV, Linear Algebra Appl. 3 (1970), 79-114. | Zbl 0225.15012

[003] [B-Y] C. S. Ballantine and E. L. Yip, Congruence and conjunctivity of matrices, Linear Algebra Appl. 32 (1980), 159-198. | Zbl 0454.15006

[004] [B-M-S] H. Bass, J. Milnor and J.-P. Serre, Solution of the congruence subgroup problem for SLn (n ≥ 3) and Sp2n (n ≥ 2), IHES Publ. Math. 33 (1967), 59-137.

[005] [B-G-H] J. Buhler, R. Gupta and J. Harris, Isotropic subspaces for skewforms and maximal Abelian subgroups of p-groups, J. Algebra 108 (1987), 269-279. | Zbl 0612.20009

[006] [C-T] J. T. Campbell and E. C. Trouy, When are two elements of GL(2,ℤ) similar, Linear Algebra Appl. 157 (1991), 175-184. | Zbl 0743.20047

[007] [C-K1] D. Carter and G. Keller, Elementary expressions for unimodular matrices, Comm. Algebra 12 (1984), 379-389. | Zbl 0572.20030

[008] [C-K2] D. Carter and G. Keller, Bounded elementary generation of SLn(θ), Amer. J. Math. 105 (1983), 673-687.

[009] [C-L-R] M.-D. Choi, C. Laurie and H. Radjavi, On commutators and invariant subspaces, Linear and Multilinear Algebra 9 (1981), 329-340. | Zbl 0455.15011

[010] [C-H] D. Choudhury and R. A. Horn, A complex orthogonal-symmetric analog of the polar decomposition, SIAM J. Algebraic Discrete Methods 8 (1987), 218-225. | Zbl 0623.15006

[011] [C-W] G. Cooke and P. J. Weinberger, On the construction of division chains in algebraic number rings, with applications to SL2, Comm. Algebra 3 (1975), 481-524. | Zbl 0315.12001

[012] [D-V] R. K. Dennis and L. N. Vaserstein, On a question of M. Newman on the number of commutators, J. Algebra 118 (1988), 150-161. | Zbl 0649.20048

[013] [DJO] D. Ž. Djoković, Product of two involutions, Arch. Math. (Basel) 18 (1967), 582-584.

[014] [ELL] E. W. Ellers, Classical Groups, in: Generators and Relations in Groups and Geometries, NATO Adv. Sci. Inst. Ser. C, Kluwer, Dordrecht, 1991, 1-45.

[015] [F] P. A. Fillmore, On similarity and the diagonal of a matrix, Amer. Math. Monthly 76 (1969), 167-169. | Zbl 0175.02403

[016] [GAI] F. J. Gaines, Kato-Taussky-Wielandt commutator relations, Linear Algebra Appl. 1 (1968), 127-138. | Zbl 0155.06601

[017] [G-L-R] I. Gohberg, P. Lancaster and L. Rodman, Invariant Subspaces of Matrices with Applications, Wiley, New York, 1986. | Zbl 0608.15004

[018] [GOW1] R. Gow, The equivalence of an invertible matrix to its transpose, Linear and Multilinear Algebra 8 (1980), 329-336. | Zbl 0432.15004

[019] [GOW2] R. Gow, Products of two involutions in classical groups of characteristic 2, J. Algebra 71 (1981), 583-591. | Zbl 0464.20029

[020] [G-L] R. Gow and T. J. Laffey, Pairs of alternating forms and products of two skew-symmetric matrices, Linear Algebra Appl. 63 (1984), 119-132. | Zbl 0557.15016

[021] [G-T] R. Gow and C. Tamburini, Generation of SL(n,ℤ) by a Jordan unipotent matrix and its transpose, to appear. | Zbl 0769.20021

[022] [GRA] D. R. Grayson, SK₁ of an interesting principal ideal domain, J. Pure Appl. Algebra 20 (1981), 157-163. | Zbl 0467.18004

[023] [G-P-R] L. Grunenfelder, L. Paré and H. Radjavi, On a commutator theorem of R. C. Thompson, Linear and Multilinear Algebra 16 (1984), 129-131. | Zbl 0548.15010

[024] [GRU] F. Grunewald, Solution of the conjugacy problem in certain arithmetic groups, in: Word Problems II, S. I. Adian, W. W. Boone and G. Higman (eds.), North-Holland, 1980, 101-139.

[025] [GUS] W. Gustafson, Modules and matrices, Linear Algebra Appl. 157 (1991), 3-19. | Zbl 0736.16001

[026] [G-H-R] W. Gustafson, P. Halmos and H. Radjavi, Products of involutions, ibid. 13 (1976), 157-162. | Zbl 0325.15009

[027] [H-OM] A. J. Hahn and O. T. O'Meara, The Classical Groups and K-theory, Grundlehren Math. Wiss. 291, Springer, New York, 1989.

[028] [HON] K. Honda, On commutators in finite groups, Comment. Math. Univ. St. Paul. 2 (1953), 9-12. | Zbl 0052.02204

[029] [HUP] B. Huppert, Endliche Gruppen I, Springer, Berlin, 1967. | Zbl 0217.07201

[030] [KAL] W. van der Kallen, SL(ℂ[x]) does not have bounded word length, in: Proc. Algebraic K-Theory Conf., Lecture Notes in Math. 996, Springer, 1982, 356-361. | Zbl 0935.20501

[031] [KAP1] I. Kaplansky, Linear Algebra and Geometry, Allyn and Bacon, 1963.

[032] [KAP2] I. Kaplansky, Algebraic polar decomposition, SIAM J. Matrix Anal. Appl. 11 (1990), 213-217. | Zbl 0698.15006

[033] [LAF1] T. J. Laffey, Algebras generated by two idempotents, Linear Algebra Appl. 35 (1985), 45-53.

[034] [LAF2] T. J. Laffey, Factorizations of matrices involving symmetric matrices and involutions, in: Current Trends in Matrix Theory, North-Holland, 1987, 175-198.

[035] [LAF3] T. J. Laffey, Matrix factorization with symmetry properties, in: Applications of Matrix Theory, Clarendon Press, Oxford, 1989, 63-70.

[036] [LAF4] T. J. Laffey, Factorizations of integer matrices as products of idempotents and nilpotents, Linear Algebra Appl. 120 (1989), 81-94. | Zbl 0677.15005

[037] [LAF5] Products of matrices, in: Generators and Relations in Groups and Geometries, NATO Adv. Sci. Inst. Ser. C, Kluwer, Dordrecht, 1991, 95-123.

[038] [L-M1] T. J. Laffey and E. Meehan, An extension of a factorization theorem of Wedderburn to matrix rings, Linear Algebra Appl. 172 (1992), 243-260. | Zbl 0760.15009

[039] [L-M2] T. J. Laffey and E. Meehan, Factorization of polynomials using commuting matrices, ibid., to appear.

[040] [L-M3] T. J. Laffey and E. Meehan, Factorization of polynomials involving unipotent Jordan blocks, Appl. Math. Lett. 5 (1992), 29-33. | Zbl 0755.15005

[041] [L-R] T. J. Laffey and R. Reams, Integral similarity and commutators of integral matrices, Linear Algebra Appl., to appear. | Zbl 0801.15015

[042] [L-W] T. J. Laffey and T. T. West, Polynomial commutators, Bull. Irish Math. Soc., to appear.

[043] [L-MAC] C. G. Latimer and C. C. MacDuffee, A correspondence between classes of ideals and classes of matrices, Ann. of Math. 34 (1933), 313-316. | Zbl 0006.29002

[044] [LEN] H. W. Lenstra, Grothendieck groups of Abelian group rings, J. Pure Appl. Algebra 20 (1981), 173-193. | Zbl 0467.16016

[045] [LIS1] D. Lissner, Matrices over polynomial rings, Trans. Amer. Math. Soc. 98 (1961), 285-305. | Zbl 0111.01703

[046] [LIS2] D. Lissner, Outer product rings, ibid. 116 (1965), 526-535. | Zbl 0134.03804

[047] [LIU] K.-M. Liu, Decompositions of matrices into three involutions, Linear Algebra Appl. 111 (1989), 1-24.

[048] [NEW] M. Newman, Unimodular commutators, Proc. Amer. Math. Soc. 101 (1987), 605-609. | Zbl 0633.15007

[049] [OCH] J. Ochoa, Un modelo elementel para las clases de ideales de un anillo algebraico, Rev. Real Acad. Cienc. Madrid 63 (1974), 711-806.

[050] [REH] H. P. Rehm, On Ochoa's special matrices in matrix classes, Linear Algebra Appl. 17 (1977), 181-188. | Zbl 0362.15008

[051] [ROW] L. H. Rowen, Polynomial Identities in Ring Theory, Academic Press, New York, 1980.

[052] [SOU1] A. R. Sourour, A factorization theorem for matrices, Linear and Multilinear Algebra 19 (1986), 141-147. | Zbl 0591.15008

[053] [SOU2] A. R. Sourour, Nilpotent factorization of matrices, ibid. 31 (1992), 303-308. | Zbl 0754.15009

[054] [TAU1] O. Taussky, On a theorem of Latimer and MacDuffee, Canad. J. Math. 1 (1949), 300-302. | Zbl 0045.15404

[055] [TAU2] O. Taussky, Positive definite matrices and their role in the study of the characteristic roots of general matrices, Adv. in Math. 2 (1967), 175-186. | Zbl 0197.02702

[056] [T-Z] O. Taussky and H. Zassenhaus, On the similarity transformation between a matrix and its transpose, Pacific J. Math. 9 (1959), 893-896. | Zbl 0087.01501

[057] [THO1] R. C. Thompson, Commutators in the special and general linear groups, Trans. Amer. Math. Soc. 101 (1961), 16-33. | Zbl 0109.26002

[058] [THO2] R. C. Thompson, Commutators of matrices with prescribed determinants, Canad. J. Math. 20 (1968), 203-221.

[059] [TOW] J. Towber, Complete reducibility in exterior algebras over free modules, J. Algebra 10 (1968), 299-309. | Zbl 0186.34103

[060] [TRO] S. M. Trott, A pair of generators for the unimodular group, Canad. Math. Bull. 5 (1962), 245-252. | Zbl 0107.02503

[061] [VAS] L. N. Vaserstein, Noncommutative number theory, algebraic K-theory and algebraic number theory, in: Contemp. Math. 83, Amer. Math. Soc., 1985, 445-449.

[062] [V-W] L. N. Vaserstein and E. Wheland, Factorization of invertible matrices over rings of stable rank one, preprint, 1990. | Zbl 0705.15004

[063] [WAT] W. C. Waterhouse, Pairs of quadratic forms, Invent. Math. 37 (1976), 157-164. | Zbl 0337.10015

[064] [WIL] J. Williamson, The equivalence of non-singular pencils of Hermitian matrices in an arbitrary field, Amer. J. Math. 57 (1935), 475-490. | Zbl 61.0073.01

[065] [WON1] M. J. Wonenberger, A decomposition of orthogonal transformations, Canad. Math. Bull. 7 (1964), 379-383.

[066] [WON2] M. J. Wonenberger, Transformations which are products of two involutions, J. Math. Mech. 16 (1966), 327-338.

[067] [WU1] P. Y. Wu, Products of nilpotent matrices, Linear Algebra Appl. 96 (1987), 227-232. | Zbl 0628.15008

[068] [WU2] P. Y. Wu, The operator factorization theorems, ibid. 117 (1989), 35-63.