In this survey article we are going to present the effectiveness of the use of unitary asymptotes in the study of Hilbert space operators.
@article{bwmeta1.element.bwnjournal-article-bcpv30z1p191bwm, author = {K\'erchy, L\'aszl\'o}, title = {Unitary asymptotes of Hilbert space operators}, journal = {Banach Center Publications}, volume = {29}, year = {1994}, pages = {191-201}, zbl = {0807.47005}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv30z1p191bwm} }
Kérchy, László. Unitary asymptotes of Hilbert space operators. Banach Center Publications, Tome 29 (1994) pp. 191-201. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv30z1p191bwm/
[000] [1] S. Banach, Théorie des Opérations Linéaires, Chelsea, New York, 1955. | Zbl 0067.08902
[001] [2] H. Bercovici, Operator Theory and Arithmetic in , Math. Surveys Monographs 26, Amer. Math. Soc., Providence, R.I., 1988.
[002] [3] H. Bercovici, Commuting power-bounded operators, Acta Sci. Math. (Szeged) 57 (1993), 55-64. | Zbl 0819.47017
[003] [4] H. Bercovici and L. Kérchy, On the spectra of -contractions, Proc. Amer. Math. Soc. 95 (1985), 412-418. | Zbl 0606.47014
[004] [5] H. Bercovici and K. Takahashi, On the reflexivity of contractions on Hilbert space, J. London Math. Soc. (2) 32 (1985), 149-156. | Zbl 0536.47009
[005] [6] J. B. Conway, A Course in Functional Analysis, Springer, New York, 1985. | Zbl 0558.46001
[006] [7] M. Day, Means for bounded functions and ergodicity of the bounded representations of semigroups, Trans. Amer. Math. Soc. 69 (1950), 276-291. | Zbl 0039.12301
[007] [8] J. A. Deddens and P. A. Fillmore, Reflexive linear transformations, Linear Algebra Appl. 10 (1975), 89-93. | Zbl 0301.15011
[008] [9] N. Dunford and J. Schwartz, Linear Operators. II, Interscience, New York, 1963.
[009] [10] S. R. Foguel, A counterexample to a problem of Sz.-Nagy, Proc. Amer. Math. Soc. 15 (1964), 788-790. | Zbl 0124.06602
[010] [11] P. R. Halmos, On Foguel's answer to Nagy's question, ibid., 791-793. | Zbl 0123.09701
[011] [12] H. Helson, Lectures on Invariant Subspaces, Academic Press, New York, 1964.
[012] [13] E. Hewitt and K. Ross, Abstract Harmonic Analysis. I, Springer, Berlin, 1963. | Zbl 0115.10603
[013] [14] E. Hille and R. S. Phillips, Functional Analysis and Semi-groups, Amer. Math. Soc., Providence, 1957.
[014] [15] T. B. Hoover, Quasi-similarity of operators, Illinois J. Math. 16 (1972), 678-686. | Zbl 0249.47014
[015] [16] L. Kérchy, A description of invariant subspaces of -contractions, J. Operator Theory 15 (1986), 327-344. | Zbl 0602.47004
[016] [17] L. Kérchy, Contractions being weakly similar to unitaries, in: Oper. Theory: Adv. Appl. 17, Birkhäuser, Basel, 1986, 187-200. | Zbl 0586.47008
[017] [18] L. Kérchy, On the spectra of contractions belonging to special classes, J. Funct. Anal. 67 (1986), 153-166. | Zbl 0588.47014
[018] [19] L. Kérchy, On the residual parts of completely non-unitary contractions, Acta Math. Hungar. 50 (1987), 127-145. | Zbl 0632.47006
[019] [20] L. Kérchy, Invariant subspaces of -contractions with non-reductive unitary extensions, Bull. London Math. Soc. 19 (1987), 161-166. | Zbl 0594.47007
[020] [21] L. Kérchy, On a conjecture of Teodorescu and Vasyunin, in: Oper. Theory: Adv. Appl. 28, Birkhäuser, Basel, 1988, 169-172. | Zbl 0649.47004
[021] [22] L. Kérchy, Isometric asymptotes of power bounded operators, Indiana Univ. Math. J. 38 (1989), 173-188. | Zbl 0693.47014
[022] [23] L. Kérchy, On the functional calculus of contractions with nonvanishing unitary asymptotes, Michigan Math. J. 37 (1990), 323-338. | Zbl 0744.47011
[023] [24] L. Kérchy, On the reducing essential spectra of contractions, Acta Sci. Math. (Szeged) 57 (1993), 175-198. | Zbl 0818.47006
[024] [25] N. K. Nikolskiĭ and V. I. Vasyunin, A unified approach to function models, and the transcription problem, in: Oper. Theory: Adv. Appl. 41, Birkhäuser, Basel, 1989, 405-434. | Zbl 0685.47006
[025] [26] V. V. Peller, Estimates of functions of power bounded operators on Hilbert space, J. Operator Theory 7 (1982), 341-372. | Zbl 0485.47007
[026] [27] V. Pták, Construction of dilations, Exposition. Math. 10 (1992), 151-170. | Zbl 0778.47007
[027] [28] H. Radjavi and P. Rosenthal, Invariant Subspaces, Springer, New York, 1973. | Zbl 0269.47003
[028] [29] F. Riesz and B. Sz.-Nagy, Functional Analysis, Ungar, New York, 1955.
[029] [30] W. Rudin, Functional Analysis, McGraw-Hill, New York, 1973.
[030] [31] N. Salinas, Reducing essential eigenvalues, Duke Math. J. 40 (1973), 561-580. | Zbl 0292.47001
[031] [32] D. Sarason, Invariant subspaces and unstarred operator algebras, Pacific J. Math. 17 (1966), 511-517. | Zbl 0171.33703
[032] [33] B. Sz.-Nagy, On uniformly bounded linear transformations in Hilbert space, Acta Sci. Math. (Szeged) 11 (1947), 152-157.
[033] [34] B. Sz.-Nagy, Sur les contractions de l'espace de Hilbert, ibid. 15 (1953), 87-92. | Zbl 0052.12203
[034] [35] B. Sz.-Nagy and C. Foiaş, Harmonic Analysis of Operators on Hilbert Space, North-Holland and Akadémiai Kiadó, Amsterdam-Budapest, 1970.
[035] [36] K. Takahashi, The reflexivity of contractions with nonreductive *-residual parts, Michigan Math. J. 34 (1987), 153-159. | Zbl 0618.47011
[036] [37] W. R. Wogen, On reflexivity and quasisimilarity, preprint.