On incomparability of Banach spaces
González, Manuel ; Martinón, Antonio
Banach Center Publications, Tome 29 (1994), p. 161-174 / Harvested from The Polish Digital Mathematics Library

Several concepts of incomparability of Banach spaces have been considered in the literature, which allow one to describe some of the properties of the product of two Banach spaces as a juxtaposition of the corresponding properties of the factors. In this paper we study the relations between these concepts of incomparability, survey the main results and applications, and state some open problems.

Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:262688
@article{bwmeta1.element.bwnjournal-article-bcpv30z1p161bwm,
     author = {Gonz\'alez, Manuel and Martin\'on, Antonio},
     title = {On incomparability of Banach spaces},
     journal = {Banach Center Publications},
     volume = {29},
     year = {1994},
     pages = {161-174},
     zbl = {0819.46009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv30z1p161bwm}
}
González, Manuel; Martinón, Antonio. On incomparability of Banach spaces. Banach Center Publications, Tome 29 (1994) pp. 161-174. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv30z1p161bwm/

[000] [1] P. Aiena and M. González, Essentially incomparable Banach spaces and Fredholm theory, Proc. Roy. Irish Acad. 93A (1993), 49-59. | Zbl 0790.46010

[001] [2] T. Alvarez, M. González and V. M. Onieva, A note on three-space Banach space ideals, Arch. Math. (Basel) 46 (1986), 169-170. | Zbl 0574.47029

[002] [3] T. Alvarez, M. González and V. M. Onieva, Totally incomparable Banach spaces and three-space ideals, Math. Nachr. 131 (1987), 83-88. | Zbl 0659.46009

[003] [4] T. Alvarez, M. González and V. M. Onieva, Characterizing two classes of operator ideals, in: Contribuciones Matemáticas. Homenaje Prof. Antonio Plans, Univ. Zaragoza, Zaragoza, 1990, 7-21. | Zbl 1290.47073

[004] [5] J. Bourgain, New Classes of p-Spaces, Lecture Notes in Math. 889, Springer, Berlin, 1981.

[005] [6] J. Bourgain and F. Delbaen, A class of special -spaces, Acta Math. 145 (1980), 155-176. | Zbl 0466.46024

[006] [7] P. G. Casazza, N. J. Kalton and L. Tzafriri, Decompositions of Banach lattices into direct sums, Trans. Amer. Math. Soc. 304 (1987), 771-800. | Zbl 0676.46012

[007] [8] J. C. Díaz, An example of Fréchet space, not Montel, without infinite dimensional normable subspaces, Proc. Amer. Math. Soc. 96 (1986), 721. | Zbl 0592.46001

[008] [9] J. Diestel and R. H. Lohman, Applications of mapping theorems to Schwartz spaces and projections, Michigan Math. J. 20 (1973), 39-44. | Zbl 0238.46043

[009] [10] J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys 15, Amer. Math. Soc., 1977.

[010] [11] A. Douady, Un espace de Banach dont le groupe linéaire n'est pas connexe, Indag. Math. 27 (1965), 787-789. | Zbl 0178.26403

[011] [12] L. Drewnowski, On minimally subspace-comparable F-spaces, J. Funct. Anal. 26 (1977), 39-44. | Zbl 0366.46012

[012] [13] I. S. Edelstein and P. Wojtaszczyk, On projections and unconditional bases in direct sums of Banach spaces, Studia Math. 56 (1976), 263-276. | Zbl 0362.46017

[013] [14] G. Emmanuele, Banach spaces in which Dunford-Pettis sets are relatively compact, Arch. Math. (Basel) 58 (1992), 477-485. | Zbl 0761.46010

[014] [15] M. González, On essentially incomparable Banach spaces, Math. Z., to appear.

[015] [16] M. González and A. Martinón, Operational quantities derived from the norm and generalized Fredholm theory, Comment. Math. Univ. Carolin. 32 (1991), 645-657. | Zbl 0762.47005

[016] [17] M. González and A. Martinón, Fredholm theory and space ideals, Boll. Un. Mat. Ital. 7-B (1993), 473-488.

[017] [18] M. González and V. M. Onieva, On incomparability of Banach spaces, Math. Z. 112 (1986), 581-585. | Zbl 0602.46015

[018] [19] M. González and V. M. Onieva, El problema de los tres espacios, in: Homenaje al Prof. Dr. Nácere Hayek Calil, Univ. La Laguna, La Laguna, 1990, 155-162.

[019] [20] W. T. Gowers and B. Maurey, The unconditional basic sequence problem, J. Amer. Math. Soc. 6 (1993), 851-874. | Zbl 0827.46008

[020] [21] V. I. Gurariĭ, On openings and inclinations of subspaces of Banach spaces, Teor. Funktsiĭ Funktsional. Anal. i Prilozhen. 1 (1965), 194-204 (in Russian).

[021] [22] S. Heinrich, On the relation between linear n-widths and approximation numbers, J. Approx. Theory 58 (1989), 315-333. | Zbl 0699.41022

[022] [23] N. J. Kalton, Quotients of F-spaces, Glasgow Math. J. 19 (1978), 103-108. | Zbl 0398.46002

[023] [24] N. J. Kalton, B. Turett and J. J. Uhl, Jr., Basically scattered vector measures, Indiana Univ. Math. J. 28 (1979), 803-816. | Zbl 0461.28005

[024] [25] T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Analyse Math. 6 (1958), 261-322. | Zbl 0090.09003

[025] [26] N. H. Kuiper, The homotopy type of the unitary group of Hilbert space, Topology 3 (1965), 19-30. | Zbl 0129.38901

[026] [27] A. Lavergne, Remark on sums of complemented subspaces, Colloq. Math. 41 (1979), 103-104. | Zbl 0447.47002

[027] [28] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I. Sequence Spaces, Springer, Berlin, 1977. | Zbl 0362.46013

[028] [29] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II. Function Spaces, Springer, Berlin, 1977. | Zbl 0362.46013

[029] [30] R. H. Lohman, An example concerning normed subspaces of locally convex spaces, Proc. Amer. Math. Soc. 41 (1973), 245-246. | Zbl 0251.46004

[030] [31] A. Martinón, Cantidades operacionales en teoría de Fredholm, Tesis Doctoral, Univ. La Laguna, 1989.

[031] [32] A. Martinón, Operational quantities and classes of operators, in: Aportaciones matemáticas en memoria del Prof. V. M. Onieva, Univ. Cantabria, Santander, 1991, 227-236. | Zbl 0756.47012

[032] [33] B. S. Mityagin, The homotopy structure of the linear group of a Banach space, Russian Math. Surveys 25 (1970), 59-103. | Zbl 0232.47046

[033] [34] G. Neubauer, Der Homotopietyp der Automorphismengruppe in den Räumen lp und c₀, Math. Ann. 174 (1967), 33-40. | Zbl 0158.14402

[034] [35] A. Pełczyński, On strictly singular and strictly cosingular operators. I. Strictly singular and strictly cosingular operators in C(S)-spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 13 (1965), 31-36. | Zbl 0138.38604

[035] [36] A. Pełczyński, On strictly singular and strictly cosingular operators. II. Strictly singular and strictly cosingular operators in L(ν)-spaces, ibid., 37-41. | Zbl 0138.38604

[036] [37] A. Pietsch, Operator Ideals, North-Holland, Amsterdam, 1980.

[037] [38] A. Pietsch, Inessential operators in Banach spaces, Integral Equations Operator Theory 1 (1978), 589-591. | Zbl 0399.47040

[038] [39] J. Prada, On idempotent operators on Fréchet spaces, Arch. Math. (Basel) 43 (1984), 179-182. | Zbl 0537.46005

[039] [40] H. P. Rosenthal, On totally incomparable Banach spaces, J. Funct. Anal. 4 (1969), 167-175. | Zbl 0184.15004

[040] [41] H. P. Rosenthal, On quasi-complemented subspaces of Banach spaces, with an appendix on compactness of operators from Lp(μ) to Lr(ν), ibid., 176-214. | Zbl 0185.20303

[041] [42] W. Rudin, Spaces of type H+C, Ann. Inst. Fourier (Grenoble) 25 (1) (1975), 99-125.

[042] [43] R. J. Whitley, Strictly singular operators and their conjugates, Trans. Amer. Math. Soc. 113 (1964), 252-261. | Zbl 0124.06603

[043] [44] P. Wojtaszczyk, On projections and unconditional bases in direct sums of Banach spaces II, Studia Math. 62 (1978), 193-201. | Zbl 0389.46011

[044] [45] V. P. Zahariuta, On the isomorphism of cartesian products of locally convex spaces, ibid. 46 (1973), 201-221.

[045] [46] J. Zemánek, Geometric characteristics of semi-Fredholm operators and their asymptotic behaviour, ibid. 80 (1984), 219-234. | Zbl 0556.47008