About stability estimates and resolvent conditions
Van Dorsselaer, J. ; Kraaijevanger, J. ; Spijker, M.
Banach Center Publications, Tome 29 (1994), p. 215-225 / Harvested from The Polish Digital Mathematics Library
Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:262565
@article{bwmeta1.element.bwnjournal-article-bcpv29z1p215bwm,
     author = {Van Dorsselaer, J. and Kraaijevanger, J. and Spijker, M.},
     title = {About stability estimates and resolvent conditions},
     journal = {Banach Center Publications},
     volume = {29},
     year = {1994},
     pages = {215-225},
     zbl = {0803.65087},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv29z1p215bwm}
}
Van Dorsselaer, J.; Kraaijevanger, J.; Spijker, M. About stability estimates and resolvent conditions. Banach Center Publications, Tome 29 (1994) pp. 215-225. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv29z1p215bwm/

[000] [1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York 1965.

[001] [2] F. F. Bonsall and J. Duncan, Numerical ranges, in: Studies in Functional Analysis, R. G. Bartle (ed.), Mathematical Association of America, 1980, 1-49.

[002] [3] Ph. Brenner and V. Thomée, On rational approximations of semigroups, SIAM J. Numer. Anal. 16 (1979), 683-694. | Zbl 0413.41011

[003] [4] J. B. Conway, A Course in Functional Analysis, Springer, New York 1985. | Zbl 0558.46001

[004] [5] M. Crouzeix, On multistep approximation of semigroups in Banach spaces, J. Comput. Appl. Math. 20 (1987), 25-35. | Zbl 0632.65067

[005] [6] D. F. Griffiths, I. Christie and A. R. Mitchell, Analysis of error growth for explicit difference schemes in conduction-convection problems, Internat. J. Numer. Methods Engrg. 15 (1980), 1075-1081. | Zbl 0432.76077

[006] [7] R. D. Grigorieff, Time discretization of semigroups by the variable two-step BDF method, in: Numerical Treatment of Differential Equations, K. Strehmel (ed.), Teubner, Leipzig 1991, 204-216.

[007] [8] P. Henrici, Applied and Computational Complex Analysis, vol. 2, Wiley, New York 1977.

[008] [9] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge Univ. Press, 1990. | Zbl 0704.15002

[009] [10] J. F. B. M. Kraaijevanger, H. W. J. Lenferink and M. N. Spijker, Stepsize restrictions for stability in the numerical solution of ordinary and partial differential equations, J. Comput. Appl. Math. 20 (1987), 67-81. | Zbl 0633.65065

[010] [11] H. O. Kreiss, Über die Stabilitätsdefinition für Differenzengleichungen die partielle Differentialgleichungen approximieren, BIT 2 (1962), 153-181. | Zbl 0109.34702

[011] [12] H. O. Kreiss, Well posed hyperbolic initial boundary value problems and stable difference approximations, in: Proc. Third Internat. Conf. on Hyperbolic Problems, Uppsala, Sweden, 1990.

[012] [13] H. O. Kreiss and L. Wu, On the stability definition of difference approximations for the initial boundary value problem, Appl. Numer. Math. 12 (1993), 213-227. | Zbl 0782.65119

[013] [14] G. I. Laptev, Conditions for the uniform well-posedness of the Cauchy problem for systems of equations, Soviet Math. Dokl. 16 (1975), 65-69. | Zbl 0317.35019

[014] [15] H. W. J. Lenferink and M. N. Spijker, The relevance of stability regions in the numerical solution of initial value problems, in: Numerical Treatment of Differential Equations, K. Strehmel (ed.), Teubner, Leipzig 1988, 95-103. | Zbl 0684.65086

[015] [16] H. W. J. Lenferink and M. N. Spijker, A generalization of the numerical range of a matrix, Linear Algebra Appl. 140 (1990), 251-266. | Zbl 0712.15027

[016] [17] H. W. J. Lenferink and M. N. Spijker, On the use of stability regions in the numerical analysis of initial value problems, Math. Comp. 57 (1991), 221-237. | Zbl 0727.65072

[017] [18] H. W. J. Lenferink and M. N. Spijker, On a generalization of the resolvent condition in the Kreiss matrix theorem, ibid., 211-220. | Zbl 0726.15020

[018] [19] R. J. LeVeque and L. N. Trefethen, On the resolvent condition in the Kreiss matrix theorem, BIT 24 (1984), 584-591. | Zbl 0559.15018

[019] [20] Ch. Lubich, On the convergence of multistep methods for nonlinear stiff differential equations, Numer. Math. 58 (1991), 839-853. | Zbl 0729.65055

[020] [21] Ch. Lubich and O. Nevanlinna, On resolvent conditions and stability estimates, BIT 31 (1991), 293-313.

[021] [22] C. A. McCarthy and J. Schwartz, On the norm of a finite boolean algebra of projections, and applications to theorems of Kreiss and Morton, Comm. Pure Appl. Math. 18 (1965), 191-201. | Zbl 0151.19401

[022] [23] J. Miller, On the resolvent of a linear operator associated with a well-posed Cauchy problem, Math. Comp. 22 (1968), 541-548. | Zbl 0164.16702

[023] [24] J. Miller and G. Strang, Matrix theorems for partial differential and difference equations, Math. Scand. 18 (1966), 113-123. | Zbl 0144.13404

[024] [25] K. W. Morton, On a matrix theorem due to H. O. Kreiss, Comm. Pure Appl. Math. 17 (1964), 375-379. | Zbl 0146.13702

[025] [26] O. Nevanlinna, Remarks on time discretization of contraction semigroups, Helsinki Univ. Techn., Inst. Math., report HTKK-MAT-A225 (1984).

[026] [27] S. V. Parter, Stability, convergence, and pseudo-stability of finite-difference equations for an over-determined problem, Numer. Math. 4 (1962), 277-292. | Zbl 0112.07802

[027] [28] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York 1983.

[028] [29] C. Pearcy, An elementary proof of the power inequality for the numerical radius, Michigan Math. J. 13 (1966), 289-291. | Zbl 0143.16205

[029] [30] S. C. Reddy and L. N. Trefethen, Lax-stability of fully discrete spectral methods via stability regions and pseudo-eigenvalues, Comput. Methods Appl. Mech. Engrg. 80 (1990), 147-164. | Zbl 0735.65070

[030] [31] S. C. Reddy and L. N. Trefethen, Stability of the method of lines, Numer. Math. 62 (1992), 235-267. | Zbl 0734.65077

[031] [32] R. D. Richtmyer and K. W. Morton, Difference Methods for Initial-Value Problems, 2nd ed., Wiley, New York 1967. | Zbl 0155.47502

[032] [33] M.-N. Le Roux, Semidiscretization in time for parabolic problems, Math. Comp. 33 (1979), 919-931. | Zbl 0417.65049

[033] [34] W. Rudin, Functional Analysis, McGraw-Hill, New York 1973.

[034] [35] J. C. Smith, An inequality for rational functions, Amer. Math. Monthly 92 (1985), 740-741.

[035] [36] M. N. Spijker, Stepsize restrictions for stability of one-step methods in the numerical solution of initial value problems, Math. Comp. 45 (1985), 377-392. | Zbl 0579.65092

[036] [37] M. N. Spijker, On a conjecture by LeVeque and Trefethen related to the Kreiss matrix theorem, BIT 31 (1991), 551-555. | Zbl 0736.15015

[037] [38] E. Tadmor, The equivalence of L2-stability, the resolvent condition and strict H-stability, Linear Algebra Appl. 41 (1981), 151-159. | Zbl 0469.15011

[038] [39] L. N. Trefethen, Non-normal matrices and pseudospectra, in preparation.

[039] [40] E. Wegert and L. N. Trefethen, From the Buffon needle problem to the Kreiss matrix theorem, Amer. Math. Monthly, to appear. | Zbl 0799.30002