An iterative procedure containing two parameters for solving linear algebraic systems originating from the domain decomposition technique is proposed. The optimization of the parameters is investigated. A numerical example is given as an illustration.
@article{bwmeta1.element.bwnjournal-article-bcpv29z1p207bwm, author = {Pr\'ager, Milan}, title = {Algebraic approach to domain decomposition}, journal = {Banach Center Publications}, volume = {29}, year = {1994}, pages = {207-214}, zbl = {0801.65029}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv29z1p207bwm} }
Práger, Milan. Algebraic approach to domain decomposition. Banach Center Publications, Tome 29 (1994) pp. 207-214. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv29z1p207bwm/
[000] [1] P. Bjørstad and O. Widlund, Iterative methods for the solution of elliptic problems on regions partitioned into substructures, SIAM J. Numer. Anal. 23 (1986), 1097-1120. | Zbl 0615.65113
[001] [2] J. Bramble, J. Pasciak and A. Schatz, An iterative method for elliptic problems on regions partitioned into substructures, Math. Comp. 46 (1986), 361-369. | Zbl 0595.65111
[002] [3] T. Chan, R. Glowinski, G. A. Meurant, J. Périaux and O. Widlund (eds.), Domain Decomposition Methods, SIAM, Philadelphia 1989.
[003] [4] R. Glowinski, G. H. Golub, G. A. Meurant and J. Périaux (eds.), First International Symposium on Domain Decomposition Methods for Partial Differential Equations, SIAM, Philadelphia 1988.
[004] [5] L. D. Marini and A. Quarteroni, A relaxation procedure for domain decomposition methods using finite elements, Numer. Math. 55 (1989), 575-598. | Zbl 0661.65111
[005] [6] M. Práger, An iterative method of alternating type for systems with special block matrices, Appl. Math. 36 (1991), 72-78. | Zbl 0732.65023