The paper analyses the biconjugate gradient algorithm and its preconditioned version for solving large systems of linear algebraic equations with nonsingular sparse complex matrices. Special emphasis is laid on symmetric matrices arising from discretization of complex partial differential equations by the finite element method.
@article{bwmeta1.element.bwnjournal-article-bcpv29z1p195bwm, author = {K\v r\'\i \v zek, Michal and Ml\'ynek, Jaroslav}, title = {On the preconditioned biconjugate gradients for solving linear complex equations arising from finite elements}, journal = {Banach Center Publications}, volume = {29}, year = {1994}, pages = {195-205}, zbl = {0802.65039}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv29z1p195bwm} }
Křížek, Michal; Mlýnek, Jaroslav. On the preconditioned biconjugate gradients for solving linear complex equations arising from finite elements. Banach Center Publications, Tome 29 (1994) pp. 195-205. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv29z1p195bwm/
[000] [1] O. Axelsson and V. A. Barker, Finite Element Solution of Boundary Value Problems. Theory and Computation, Academic Press, New York 1984. | Zbl 0537.65072
[001] [2] F. S. Beckman, The solution of linear equations by the conjugate gradient method, in: Mathematical Methods for Digital Computers, A. Ralston and H. S. Wilf (eds.), Wiley, New York 1960, 62-72.
[002] [3] R. Fletcher, Conjugate gradient methods for indefinite systems, in: Proc. Dundee Conf. on Numerical Analysis, A. Dold and B.Eckmann (eds.), Lecture Notes in Math. 506, Springer, New York 1975, 73-89.
[003] [4] R. W. Freund, Conjugate gradient type methods for linear systems with complex symmetric coefficient matrices, SIAM J. Sci. Statist. Comput. 13 (1992), 1-23.
[004] [5] R. W. Freund and N. M. Nachtigal, QMR: a quasi-minimal residual method for non-Hermitian linear systems, RIACS Technical Report 90.51, NASA, Columbia 1990, 33 pp.
[005] [6] D. A. H. Jacobs, A generalization of the conjugate-gradient method to solve complex systems, IMA J. Numer. Anal. 6 (1986), 447-452. | Zbl 0614.65028
[006] [7] A. Kiełbasiński, Catalogue of linear algebra algorithms of the journal Numerische Mathematik, Mat. Stos. 2 (1974), 5-13 (in Polish).
[007] [8] M. Křížek and P. Neittaanmäki, Finite Element Approximation of Variational Problems and Applications, Longman, Harlow 1990.
[008] [9] D. G. Luenberger, Hyperbolic pairs in the conjugate gradients, SIAM J. Appl. Math. 17 (1969), 1263-1267. | Zbl 0187.09704
[009] [10] Z. Mikić and E. C. Morse, The use of a preconditioned bi-conjugate gradient method for hybrid plasma stability analysis, J. Comput. Phys. 61 (1985), 154-185. | Zbl 0637.76129
[010] [11] B. N. Parlett, D. R. Taylor and Z. A. Liu, A look-ahead Lanczos algorithm for symmetric matrices, Math. Comp. 44 (1985), 105-124. | Zbl 0564.65022
[011] [12] Y. Saad, The Lanczos biorthogonalization algorithm and other oblique projection methods for solving large unsymmetric systems, SIAM J. Numer. Anal. 19 (1982), 485-506. | Zbl 0483.65022
[012] [13] R. S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, New Jersey, 1962.
[013] [14] H. A. van der Vorst and K. Dekker, Conjugate gradient type methods and preconditioning, J. Comput. Appl. Math. 24 (1988), 73-87. | Zbl 0659.65033
[014] [15] O. Widlund, A Lanczos method for a class of nonsymmetric systems of linear equations, SIAM J. Numer. Anal. 15 (1978), 801-812. | Zbl 0398.65030