In this paper we present some recent results concerning convergence rate estimates for finite-difference schemes approximating boundary-value problems. Special attention is given to the problem of minimal smoothness of coefficients in partial differential equations necessary for obtaining the results.
@article{bwmeta1.element.bwnjournal-article-bcpv29z1p165bwm, author = {Jovanovi\'c, Bo\v sko}, title = {Multipliers in Sobolev spaces and exact convergence rate estimates for the finite-difference schemes}, journal = {Banach Center Publications}, volume = {29}, year = {1994}, pages = {165-173}, zbl = {0823.65095}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv29z1p165bwm} }
Jovanović, Boško. Multipliers in Sobolev spaces and exact convergence rate estimates for the finite-difference schemes. Banach Center Publications, Tome 29 (1994) pp. 165-173. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv29z1p165bwm/
[000] [1] R. A. Adams, Sobolev Spaces, Academic Press, New York 1975.
[001] [2] J. H. Bramble and S. R. Hilbert, Bounds for a class of linear functionals with application to Hermite interpolation, Numer. Math. 16 (1971), 362-369. | Zbl 0214.41405
[002] [3] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam 1978. | Zbl 0383.65058
[003] [4] T. Dupont and R. Scott, Polynomial approximation of functions in Sobolev spaces, Math. Comp. 34 (1980), 441-463. | Zbl 0423.65009
[004] [5] B. S. Jovanović, On the convergence of finite-difference schemes for parabolic equations with variable coefficients, Numer. Math. 54 (1989), 395-404. | Zbl 0668.65069
[005] [6] B. S. Jovanović, Optimal error estimates for finite-difference schemes with variable coefficients, Z. Angew. Math. Mech. 70 (1990), 640-642. | Zbl 0715.65082
[006] [7] B. S. Jovanović, Convergence of finite-difference schemes for parabolic equations with variable coefficients, ibid. 71 (1991), 647-650.
[007] [8] B. S. Jovanović, Convergence of finite-difference schemes for hyperbolic equations with variable coefficients, ibid. 72 (1992), to appear. | Zbl 0763.65075
[008] [9] B. S. Jovanović, L. D. Ivanović and E. E. Süli, Convergence of a finite-difference scheme for second-order hyperbolic equations with variable coefficients, IMA J. Numer. Anal. 7 (1987), 39-45. | Zbl 0624.65095
[009] [10] B. S. Jovanović, L. D. Ivanović and E. E. Süli, Convergence of finite-difference schemes for elliptic equations with variable coefficients, ibid., 301-305. | Zbl 0636.65096
[010] [11] R. D. Lazarov, On the question of convergence of finite-difference schemes for generalized solutions of the Poisson equation, Differentsial'nye Uravneniya 17 (1981), 1285-1294 (in Russian).
[011] [12] R. D. Lazarov, V. L. Makarov and A. A. Samarskiĭ, Application of exact difference schemes for construction and investigation of difference schemes for generalized solutions, Mat. Sb. 117 (1982), 469-480 (in Russian). | Zbl 0494.65055
[012] [13] R. D. Lazarov, V. L. Makarov and W. Weinelt, On the convergence of difference schemes for the approximation of solutions (m > 0.5) of elliptic equations with mixed derivatives, Numer. Math. 44 (1984), 223-232. | Zbl 0525.65069
[013] [14] V. G. Maz'ya and T. O. Shaposhnikova, Theory of Multipliers in Spaces of Differentiable Functions, Monographs Stud. Math. 23, Pitman, Boston 1985.
[014] [15] A. A. Samarskiĭ, Theory of Difference Schemes, Nauka, Moscow 1983 (in Russian).
[015] [16] E. Süli, B. Jovanović and L. Ivanović, Finite difference approximations of generalized solutions, Math. Comp. 45 (1985), 319-327. | Zbl 0586.65064
[016] [17] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, Deutscher Verlag der Wissenschaften, Berlin 1978. | Zbl 0387.46033
[017] [18] J. Wloka, Partial Differential Equations, Cambridge Univ. Press, 1987. | Zbl 0623.35006