The polyadic algebras that arise from the algebraization of the first-order extensions of a SIC are characterized and a representation theorem is proved. Standard implicational calculi (SIC)'s were considered by H. Rasiowa [19] and include classical and intuitionistic logic and their various weakenings and fragments, the many-valued logics of Post and Łukasiewicz, modal logics that admit the rule of necessitation, BCK logic, etc.
@article{bwmeta1.element.bwnjournal-article-bcpv28z1p51bwm, author = {Pigozzi, Don and Salibra, Antonino}, title = {Polyadic algebras over nonclassical logics}, journal = {Banach Center Publications}, volume = {28}, year = {1993}, pages = {51-66}, zbl = {0794.03092}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv28z1p51bwm} }
Pigozzi, Don; Salibra, Antonino. Polyadic algebras over nonclassical logics. Banach Center Publications, Tome 28 (1993) pp. 51-66. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv28z1p51bwm/
[000] [1] H. P. Barendregt, The Lambda Calculus. Its Syntax and Semantics, revised edition, Stud. Logic Found. Math. 103, North-Holland, Amsterdam 1985.
[001] [2] W. J. Blok and D. Pigozzi, Algebraizable logics, Mem. Amer. Math. Soc. 396 (1989). | Zbl 0664.03042
[002] [3] Z. B. Diskin, Polyadic algebras for non-classical logics, I,II,III,IV, Latv. Mat. Ezhegodnik (in Russian), to appear.
[003] [4] J. .Freedman, Algebraic semantics for modal predicate logic, Z. Math. Logik Grundlag. Math. 22 (1976), 523-552. | Zbl 0354.02022
[004] [5] G. Georgescu, A representation theorem for tense polyadic algebras, Mathematica (Cluj), 21 (1979), 131-138. | Zbl 0448.03050
[005] [6] G. Georgescu, Modal polyadic algebras, Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S.) 23 (1979), 49-64. | Zbl 0397.03042
[006] [7] G. Georgescu, A representation theorem for polyadic Heyting algebras, Algebra Universalis 14 (1982), 197-209. | Zbl 0524.03052
[007] [8] P. Halmos, Homogeneous locally finite polyadic Boolean algebras of infinite degree, Fund. Math. 43 (1956), 255-325; see also [9], pp. 97-166.
[008] [9] P. Halmos, Algebraic Logic, Chelsea, New York 1962. | Zbl 0101.01101
[009] [10] L. Henkin, An algebraic characterization of quantifiers, Fund. Math. 37 (1950), 63-74. | Zbl 0041.34804
[010] [11] L. Henkin, J. D. Monk and A. Tarski, Cylindric Algebras, Parts I and II, North-Holland, Amsterdam 1971 and 1985.
[011] [12] J. Kotas and A. Pieczkowski, On a generalized cylindrical algebra and intuitionistic logic, Studia Logica 17 (1966), 73-80. | Zbl 0304.02012
[012] [13] A. R. Meyer, What is a model of the lambda calculus?, Inform. Control 52 (1982), 87-122. | Zbl 0507.03002
[013] [14] D. Monk, Polyadic Heyting algebras, Notices Amer. Math. Soc. 7 (1960), 735.
[014] [15] A. Mostowski, Proofs of non-deducibility in intuitionistic functional calculus, J. Symbolic Logic 13 (1948), 204-207. | Zbl 0031.19304
[015] [16] I. Németi, Algebraizations of quantifier logics. An introductory overview, Studia Logica 50 (1991), 485-569. | Zbl 0772.03033
[016] [17] D. Pigozzi and A. Salibra, The abstract variable-binding calculus, manuscript. | Zbl 0836.03038
[017] [18] D. Pigozzi and A. Salibra, An introduction to lambda abstraction algebras, manuscript.
[018] [19] H. Rasiowa, An Algebraic Approach to Non-Classical Logics, North-Holland, Amsterdam 1974. | Zbl 0299.02069
[019] [20] H. Rasiowa and R. Sikorski, The Mathematics of Metamathematics, PWN, Warszawa 1963.
[020] [21] D. Schwartz, Polyadic MV-algebras, Z. Math. Logik Grundlag. Math. 26 (1980), 561-564. | Zbl 0488.03035
[021] [22] A. Wroński, BCK-algebras do not form a variety, Math. Japon. 28 (1983), 211-213. | Zbl 0518.06014