A "partial" generalization of Fine's definition [Fin] of normal forms in normal minimal modal logic is given. This means quick access to complete axiomatizations and decidability proofs for partial modal logic [Thi].
@article{bwmeta1.element.bwnjournal-article-bcpv28z1p37bwm, author = {Jaspars, Jan}, title = {Normal forms in partial modal logic}, journal = {Banach Center Publications}, volume = {28}, year = {1993}, pages = {37-50}, zbl = {0794.03027}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv28z1p37bwm} }
Jaspars, Jan. Normal forms in partial modal logic. Banach Center Publications, Tome 28 (1993) pp. 37-50. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv28z1p37bwm/
[000] [BaP] J. Barwise and J. Perry, Situations and Attitudes, MIT Press, Cambridge, MA, 1983. | Zbl 0946.03007
[001] [Bla] S. Blamey, Partial logic, in: Handbook of Philosophical Logic, D. Gabbay and F. Guenthner (eds.), #III, Reidel, Dordrecht 1986, 1-70. | Zbl 0875.03023
[002] [FaH] R. Fagin and J. Y. Halpern, Belief, awareness and limited reasoning, in : Proc. Ninth International Joint Conference on Artificial Intelligence, Morgan Kaufmann, Los Altos 1985, 491-501.
[003] [FaV] R. Fagin and M. Y. Vardi, An internal semantics for modal logic: preliminary report, CSLI Research Notes #85-25, Stanford Univ., 1985.
[004] [Fin] K. Fine, Normal forms in modal logic, Notre Dame J. Formal Logic 16 (1975), 229-237. | Zbl 0245.02025
[005] [Jas] J. O. M. Jaspars, Theoretical circumscription in partial modal logic, in: Logics in AI, JELIA '90, J. van Eijck (ed.), Lecture Notes in Artificial Intelligence 478, Springer, Heidelberg 1991, 303-318.
[006] [Kam] H. Kamp, A scenic tour through the land of naked infinitives, manuscript, 1983.
[007] [Mus] R. A. Muskens, Meaning and partiality, Ph.D. thesis, Univ. of Amsterdam, 1989.
[008] [Ras] H. Rasiowa, An Algebraic Approach to Non-Classical Logics, North-Holland, Amsterdam 1974.
[009] [Thi] E. G. C. Thijsse, Partial propositional and modal logic; the overall theory, in: Proc. Seventh Amsterdam Colloquium, M. Stokhof and L. Torenvliet (eds.), ITLI, Amsterdam 1990, 555-579.