Weak products of universal algebras
Sain, Ildikó
Banach Center Publications, Tome 28 (1993), p. 311-318 / Harvested from The Polish Digital Mathematics Library

Weak direct products of arbitrary universal algebras are introduced. The usual notion for groups and rings is a special case. Some universal algebraic properties are proved and applications to cylindric and polyadic algebras are considered.

Publié le : 1993-01-01
EUDML-ID : urn:eudml:doc:262581
@article{bwmeta1.element.bwnjournal-article-bcpv28z1p311bwm,
     author = {Sain, Ildik\'o},
     title = {Weak products of universal algebras},
     journal = {Banach Center Publications},
     volume = {28},
     year = {1993},
     pages = {311-318},
     zbl = {0787.08008},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv28z1p311bwm}
}
Sain, Ildikó. Weak products of universal algebras. Banach Center Publications, Tome 28 (1993) pp. 311-318. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv28z1p311bwm/

[000] [1] H. Andréka, T. Gergely and I. Németi, Purely algebraic construction of first order logics, preprint of Central Research Institute of Hung. Acad. Sci., Budapest, No. KFKI-73-71 (1973), 46 pp.

[001] [2] H. Andréka, T. Gergely and I. Németi, On universal algebraic construction of logics, Studia Logica 36 (1-2) (1977), 9-47. | Zbl 0362.02057

[002] [3] H. Andréka and I. Németi, A simple, purely algebraic proof of the completeness of some first order logics, Algebra Universalis 5 (1975), 8-15.

[003] [4] H. Andréka and I. Németi, Formulas and ultraproducts in categories, Beiträge Algebra Geom. 8 (1979), 133-151.

[004] [5] M. A. Arbib and E. G. Manes, Arrows, Structures and Functors: The Categorial Imperative, Academic Press, 1975.

[005] [6] E. K. Van Deuven, J. D. Monk and R. Matatyahu, Some questions about Boolean algebras, preprint, Univ. of Colorado, Boulder, Co., 1979.

[006] [7] S. Eilenberg and M. P. Schützenberger, On pseudovarieties, Adv. in Math. 19 (3) (1976), 413-418. | Zbl 0351.20035

[007] [8] L. Fuchs, Infinite Abelian Groups, Academic Press, 1970. | Zbl 0209.05503

[008] [9] S. Givant, The structure of relation algebras generated by relativizations, preprint, Dept. of Math., Mills College, Oakland, Cal., 1991, 152 pp.

[009] [10] G. Grätzer, Universal Algebra, second ed., Springer, Berlin 1979.

[010] [11] L. Henkin, J. D. Monk and A. Tarski, Cylindric Algebras, North-Holland, Amsterdam 1971 and 1985.

[011] [12] L. Henkin, J. D. Monk, A. Tarski, H. Andréka and I. Németi, Cylindric Set Algebras, Lecture Notes in Math. 883, Springer, Berlin 1981. | Zbl 0497.03025

[012] [13] I. Malcev, Algebraic Systems, Akademie-Verlag, Berlin 1973.

[013] [14] J. D. Monk, Mathematical Logic, Graduate Texts in Math. 37, Springer, Berlin 1978.

[014] [15] J. D. Monk, On depth of Boolean algebras, lecture at the Math. Inst. Hungar. Acad. Sci., Budapest, December 1978.

[015] [16] J. D. Monk and R. Bonnet (eds.), Handbook of Boolean Algebras, I-II-III, North-Holland, Amsterdam 1989.

[016] [17] I. Németi, Connections between cylindric algebras and initial algebra semantics of CF languages, in: Mathematical Logic in Computer Science (Proc. Coll. Salgótarján 1978), B. Dömölki and T. Gergely (eds.), Colloq. Math. Soc. J. Bolyai 26, North-Holland, Amsterdam 1981, 561-605.

[017] [18] I. Németi and I. Sain, Cone-implicational subcategories and some Birkhoff-type theorems, in: Universal Algebra (Proc. Coll. Esztergom 1977), Colloq. Math. Soc. J. Bolyai 29, North-Holland, Amsterdam 1982, 535-578. | Zbl 0495.18001

[018] [19] D. Pigozzi, On some operations on classes of algebras, Algebra Universalis 2 (1972), 346-353. | Zbl 0272.08006

[019] [20] J. Rosický, Concerning equational categories, in: Universal Algebra (Proc. Coll. Esztergom 1977), Colloq. Math. Soc. J. Bolyai 29, North-Holland, Amsterdam 1982.

[020] [21] I. Sain, Weak products for universal algebra and model theory, Diagrammes 8 (1982), S1-S15. | Zbl 0525.08002