@article{bwmeta1.element.bwnjournal-article-bcpv28z1p291bwm, author = {Priestley, H.}, title = {Natural dualities for varieties of distributive lattices with a quantifier}, journal = {Banach Center Publications}, volume = {28}, year = {1993}, pages = {291-310}, zbl = {0799.06023}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv28z1p291bwm} }
Priestley, H. Natural dualities for varieties of distributive lattices with a quantifier. Banach Center Publications, Tome 28 (1993) pp. 291-310. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv28z1p291bwm/
[000] [1] M. E. Adams and H. A. Priestley, Equational bases for varieties of Ockham algebras, Algebra Universalis, to appear. | Zbl 0811.06011
[001] [2] G. E. Andrews, The Theory of Partitions, Encyclopedia Math. Appl. 2, Addison-Wesley, Reading, MA, 1976.
[002] [3] R. Cignoli, Quantifiers on distributive lattices, Discrete Math. 96 (1991), 188-197. | Zbl 0753.06012
[003] [4] R. Cignoli, Free Q-distributive lattices, manuscript.
[004] [5] R. Cignoli, S. Lafalce and A. Petrovich, Remarks on Priestley duality for distributive lattices, Order 8 (1991), 299-315. | Zbl 0754.06006
[005] [6] D. M. Clark and P. H. Krauss, On topological quasi-varieties, Acta Sci. Math. (Szeged) 47 (1983), 3-39. | Zbl 0561.08005
[006] [7] B. A. Davey, Duality theory on ten dollars a day, in: Proc. SMS Summer School on Algebras and Orders, Montréal 1991, NATO Adv. Study Inst. Ser. 389, 71-111. | Zbl 0793.08001
[007] [8] B. A. Davey and M. S. Goldberg, The free p-algebra generated by a distributive lattice, Algebra Universalis 11 (1980), 90-100. | Zbl 0386.06003
[008] [9] B. A. Davey and H. A. Priestley, Generalised piggyback dualities and applications to Ockham algebras, Houston J. Math. 13 (1987), 151-197. | Zbl 0692.08012
[009] [10] B. A. Davey and H. A. Priestley, Introduction to Lattices and Order, Cambridge Univ. Press, Cambridge 1990. | Zbl 0701.06001
[010] [11] B. A. Davey and H. A. Priestley, Partition-induced natural dualities for varieties of pseudocomplemented distributive lattices, Discrete Math. 113 (1993), 41-58. | Zbl 0781.06008
[011] [12] B. A. Davey and H. A. Priestley, Optimal natural dualities, Trans. Amer. Math. Soc., to appear. | Zbl 0804.06014
[012] [13] B. A. Davey and H. A. Priestley, Optimal dualities for varieties of Heyting algebras, preprint. | Zbl 0854.06011
[013] [14] B. A. Davey and H. Werner, Dualities and equivalences for varieties of algebras, in: Contributions to Lattice Theory (Szeged 1980), A. P. Huhn and E. T. Schmidt (eds.), Colloq. Math. Soc. János Bolyai 33, North-Holland, Amsterdam 1983, 101-275.
[014] [15] B. A. Davey and H. Werner, Piggyback dualities, in: Lectures in Universal Algebra (Szeged 1983), L. Szabó and A. Szendrei (eds.), Colloq. Math. Soc. János Bolyai 43, North-Holland, Amsterdam 1986, 61-83.
[015] [16] B. A. Davey and H. Werner, Piggyback-Dualitäten, Bull. Austral. Math. Soc. 32 (1985), 1-32.
[016] [17] R. Goldblatt, Varieties of complex algebras, Ann. Pure Appl. Logic 44 (1990), 173-242. | Zbl 0722.08005
[017] [18] P. R. Halmos, Algebraic logic I: monadic algebras, Compositio Math. 12 (1955), 217-249; reproduced in [19]. | Zbl 0087.24505
[018] [19] P. R. Halmos, Algebraic Logic, Chelsea, New York 1962.
[019] [20] G. Hansoul, A duality for Boolean algebras with operators, Algebra Universalis 17 (1983), 34-49.
[020] [21] H. A. Priestley, Ordered sets and duality for distributive lattices, in: Orders, Descriptions and Roles, M. Pouzet and D. Richard (eds.), Ann. Discrete Math. 23, North-Holland, Amsterdam 1984, 39-60.
[021] [22] H. A. Priestley, The determination of subvarieties of certain congruence-% distributive varieties, Algebra Universalis, to appear. | Zbl 0816.08008
[022] [23] H. A. Priestley, Natural dualities, in: Proc. Birkhoff Symposium 1991, K. Baker and R. Wille (eds.), to appear.
[023] [24] H. A. Priestley and M. P. Ward, A multi-purpose backtracking algorithm, submitted.