Hoops and their implicational reducts (abstract)
Bloki, W. ; Ferreirim, I.
Banach Center Publications, Tome 28 (1993), p. 219-230 / Harvested from The Polish Digital Mathematics Library
Publié le : 1993-01-01
EUDML-ID : urn:eudml:doc:262577
@article{bwmeta1.element.bwnjournal-article-bcpv28z1p219bwm,
     author = {Bloki, W. and Ferreirim, I.},
     title = {Hoops and their implicational reducts (abstract)},
     journal = {Banach Center Publications},
     volume = {28},
     year = {1993},
     pages = {219-230},
     zbl = {0848.06013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv28z1p219bwm}
}
Bloki, W.; Ferreirim, I. Hoops and their implicational reducts (abstract). Banach Center Publications, Tome 28 (1993) pp. 219-230. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv28z1p219bwm/

[000] [1] G. Birkhoff, Lattice Theory, Amer. Math. Soc. Colloq. Publ. 25, 3rd ed., Amer. Math. Soc., Providence 1967.

[001] [2] W. J. Blok and D. Pigozzi, Algebraizable Logics, Mem. Amer. Math. Soc. 396 (1989). | Zbl 0664.03042

[002] [3] W. J. Blok and D. Pigozzi, On the structure of varieties with equationally definable principal congruences III, Algebra Universalis, to appear. | Zbl 0817.08004

[003] [4] B. Bosbach, Komplementäre Halbgruppen. Kongruenzen und Quotienten, Fund. Math. 64 (1970), 1-14.

[004] [5] J. R. Büchi and T. M. Owens, Complemented monoids and hoops, unpublished manuscript.

[005] [6] C. C. Chang, A new proof of the completeness of the Łukasiewicz axioms, Trans. Amer. Math. Soc. 93 (1959), 74-80. | Zbl 0093.01104

[006] [7] W. H. Cornish, A large variety of BCK-algebras, Math. Japon. 26 (1981), 339-342. | Zbl 0463.03039

[007] [8] I. M. A. Ferreirim, On varieties and quasivarieties of hoops and their reducts, thesis, Univ. of Illinois at Chicago, 1992.

[008] [9] I. Fleischer, Every BCK-algebra is a set of residuables in an integral pomonoid, J. Algebra 119 (1988), 360-365. | Zbl 0658.06012

[009] [10] H. Gaitan, Quasivarieties of Wajsberg algebras, J. Non-Classical Logic 8 (1991), 79-101. | Zbl 0772.06011

[010] [11] D. Higgs, Dually residuated commutative monoids with identity element do not form an equational class, Math. Japon. 29 (1984), 69-75. | Zbl 0549.06009

[011] [12] W. C. Holland, A. H. Mekler, and N. R. Reilly, Varieties of lattice-ordered groups in which prime powers commute, Algebra Universalis 23 (1986), 196-214. | Zbl 0598.06008

[012] [13] Y. Komori, Super-Łukasiewicz implicational logics, Nagoya Math. J. 72 (1978), 127-133. | Zbl 0363.02015

[013] [14] H. Ono and Y. Komori, Logics without the contraction rule, J. Symbolic Logic 50 (1985), 169-201. | Zbl 0583.03018

[014] [15] M. Pałasiński, An embedding theorem for BCK-algebras, Math. Seminar Notes Kobe Univ. 10 (1982), 749-751.

[015] [16] R. Wójcicki, On matrix representations of consequence operations of Łukasiewicz's sentential calculi, Z. Math. Logik Grundlag. Math. 19 (1973), 239-247. | Zbl 0313.02008

[016] [17] A. Wroński, An algebraic motivation for BCK-algebras, Math. Japon. 30 (1983), 187-193. | Zbl 0569.03029

[017] [18] A. Wroński, BCK-algebras do not form a variety, ibid. 28 (1983), 211-213., | Zbl 0518.06014